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Learning objectives this workshop
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• Objects: scalars, vectors, matrices, tensors

• Relations: vector space, linear independence, span, basis, rank

• Operations: transpose, determinant, matrix multiplication, trace, norm, inverse

• Preview to eigenvectors and eigenvalues (if there is still time)

There is a lot of material that one could cover for linear algebra.
I recommend you to work through the readings again at your own pace.



References & Sources
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(e)-Books

• Gilbert Strang - Linear Algebra and Learning from Data – 2019

• Zico Kolter - Linear Algebra Review and Reference - 2008 www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf

• Kevin P. Murphy - Probabilistic Machine Learning – 2022

Free* online calculator

• www.wolframalpha.com

Videos

• Linear transformations and matrices | Chapter 3 https://www.youtube.com/watch?v=kYB8IZa5AuE

• The determinant | Chapter 6 https://www.youtube.com/watch?v=Ip3X9LOh2dk

• Inverse matrices, column space and null space | Chapter 7 https://www.youtube.com/watch?v=uQhTuRlWMxw

• Eigenvectors and eigenvalues | Chapter 14 https://www.youtube.com/watch?v=PFDu9oVAE-g

http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
http://www.wolframalpha.com/
https://www.youtube.com/watch?v=kYB8IZa5AuE
https://www.youtube.com/watch?v=Ip3X9LOh2dk
https://www.youtube.com/watch?v=uQhTuRlWMxw
https://www.youtube.com/watch?v=PFDu9oVAE-g
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Application 1: Rotation in 2D
Motivation {Q3}
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A matrix is both an object but also a way to manipulate vectors.
We call this manipulation linear transformation.



Application 2: Machine Learning
Motivation
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Application 3: Computational Fluid Dynamics
Motivation

66 A. Illustration of the simulation results
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Figure A.6.: Vorticity for t = [0,4,12,24,48,100,140] ms from top to bottom. The left column shows the
evolution for the nonreactive NSEs case, while the right column depicts the reactive NSEs scenario. The axis
are rescaled in units of 0.04, thus the calculation domain was 0.04⇥0.12.
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⋮
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⋮
state @ 
old time

state @ 
new time
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fluid  
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http://dx.doi.org/10.13140/RG.2.2.27335.75680

http://dx.doi.org/10.13140/RG.2.2.27335.75680
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Vectors
Basic objects

• A vector 𝐱 ∈ ℝ! is a list of n numbers. As a column vector, we write

𝐱 =

𝑥"
𝑥#
⋮
𝑥!

𝒆𝒊 =

0
⋮
0
1
0
⋮
0

Machine Learning slang:
“One-hot vector” 
All zeros except for the ith

component, which is one

Possible notation variants (no strict rule L):
• lower case (especially 𝑥, 𝑦, 𝑧, 𝑣, 𝑤) 

• bold font 𝒗
• vector on top �⃗�
• underbar 𝑣
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Matrices
Basic objects

A matrix 𝑨 ∈ ℝ$×! with m rows and n columns is arranged as such:

𝑨 =

𝑎"" 𝑎"# … 𝑎"!
𝑎#" 𝑎## … 𝑎#!
⋮ ⋮ ⋱ ⋮

𝑎$" 𝑎$# … 𝑎$!
We denote the entry of A in the ith row and jth column as 𝐴&'.

Special cases:
𝑎&& 𝑎&% … 𝑎&)
𝑎%& 𝑎%% … 𝑎%)
⋮ ⋮ ⋱ ⋮
𝑎)& 𝑎)% … 𝑎))

Square matrix
Same number of rows 
and columns

𝑎&& 0 … 0
0 𝑎%% … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑎))

Diagonal matrix 
Off-diagonal entries are zero

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

Identity matrix 
Ones on the main diagonal and 
zero elsewhere

Possible notation variants (no strict rule L):
• Upper case (especially 𝐴, 𝐵, 𝐶, 𝐼, Λ,𝑀) 

• bold font 𝑴
• double underbar 𝑀
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Matrix ordering in (linear) computer storage
Programming excursion

𝑨 =

𝑎"" 𝑎"# … 𝑎"!
𝑎#" 𝑎## … 𝑎#!
⋮ ⋮ ⋱ ⋮

𝑎$" 𝑎$# … 𝑎$!
The 1st storage address is 𝑎"", the 2nd is 𝑎"#…
Hence 𝒋 of 𝐴 𝑖, 𝒋 is the fastest index and should be the innermost loop.

Row-major order: NumPy of Python, C/C++

𝑨 =

𝑎"" 𝑎"# … 𝑎"!
𝑎#" 𝑎## … 𝑎#!
⋮ ⋮ ⋱ ⋮

𝑎$" 𝑎$# … 𝑎$!
The 1st storage address is 𝑎"", the 2nd is 𝑎#"…
Hence 𝒊 of 𝐴 𝒊, 𝑗 is the fastest index and should be the innermost loop.

Column-major order: R, Julia, MATLAB, Fortran

for i=0:m-1
for j=0:n-1

A[i,j]=0
end

end

for j=1:n
for i=1:m

A[i,j]=0
end

end



The Transpose
Operation

Given 𝐴 ∈ ℝ$×!, its transpose is written 𝐴( ∈ ℝ!×$ and it is the 𝑛×𝑚
matrix whose entries are given by 

𝐴( )* = 𝐴*) .

Properties:

• 𝐴( ( = 𝐴
• 𝐴 + 𝐵 ( = 𝐴( + 𝐵(
• 𝐴𝐵 ( = 𝐵(𝐴(
• A square matrix 𝐴 ∈ ℝ!×! is symmetric if 𝐴 = 𝐴(,

and anti-symmetric if 𝐴 = −𝐴(.

Tranpose of 𝐴 = 0 2
−2 0

is 𝐴* = 0 −2
2 0

Transpose = 
mirror on 
diagonal axis

Tranpose of column vector 𝒗 =
𝑣&
𝑣%
𝑣'

is row vector   𝒗𝑻 = 𝑣&, 𝑣%, 𝑣'
Transpose = 
flipping rows 
and columns



A tensor is a generalization of a 2d array to more than 2 dimensions 

13

Tensors
Basic objects

Source: Murphy (2022)



Vector spaces



Vector addition and scaling
Vector spaces

Image: Wikipedia 15

Vector space

The elements of an n-dimensional vector space 𝒱 are the vectors 𝒙 ∈ ℝ𝒏 (all with n entries).
Vectors can be modified by the basic operations:

• Adding: +∶ 𝒱 ×𝒱 → 𝒱
• Scaling: E ∶ ℝ ×𝒱 → 𝒱

Operations are defined element-wise.

Examples:
𝒗 + 𝒘 = 𝑣" + 𝑤", … , 𝑣! + 𝑤!

𝒗 + 2 𝒘 = (𝑣" + 2𝑤", … , 𝑣! + 2𝑤!)

For ℝ% it looks like:



Sum symbol and Einstein notation
Excursion {Q3}

Insert footer or delete this element 16

Sum symbol

J
),"

-
𝑖 = 1 + 2 + 3 + 4 = 10

J
),"

-.
𝑖 =

1
2

1 + 40 + 2 + 39 +⋯+ 38 + 3 + 39 + 2 + 40 + 1 =
41×40
2

= 820

𝑥)𝑦) = ∑),"! 𝑥) 𝑦) Q=
/01 !,2

𝑥" 𝑦" + 𝑥# 𝑦# + 𝑥2 𝑦2

Einstein notation:

If an index occurs twice in an expression, a sum sign is placed in front of it.

Therein, the index of the sum always runs over all entries (the full vector dimension).



Linear independence
Vector spaces
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Definition

A set of vectors {𝑥", 𝑥#, … , 𝑥!} ⊂ ℝ$ is called (linearly) independent if no 
vector can be represented as a linear combination of the remaining vectors. 
Conversely, a vector which can be represented as a linear combination of 
the remaining vectors is said to be (linearly) dependent. 

That is if 
𝑥! = J

),"

!3"

𝛼)𝑥)

for some scalar values 𝛼", … , 𝛼!3" ∈ ℝ. 



Linear independence
Vector spaces
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Question

Are the following vectors linearly independent?

𝑥" =
1
3 𝑥# =

1
5 𝑥2=

−3
5

If 

𝑥) = [
,"&

)-&

𝛼,𝑥,

for some scalar values 𝛼&, … , 𝛼)-& ∈ ℝ , 
then we say that 𝑥&, 𝑥%, … , 𝑥) are linearly 
dependent. 



Linear independence
Vector spaces
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Answer

Are the following vectors linearly dependent?

𝑥" =
1
3 𝑥# =

1
5 𝑥2=

−3
5

Can we find 𝛼" and 𝛼# such that 𝑥2 = 𝛼"𝑥" + 𝛼#𝑥# ?

𝛼"1 + 𝛼#1 = −3 ⇔ 𝛼" = −𝛼# − 3
𝛼"3 + 𝛼#5 = 5

−𝛼# − 3 3 + 𝛼# 5 = 5 /+9
⇔ 2𝛼# = 14 ⇔ 𝛼#= 7

Plugging in 𝛼# = 7 yields 𝛼" = −10.

𝑥", 𝑥#, 𝑥2 are linearly dependent. In fact, any vector in ℝ# can be expressed by two linearly 
independent vectors, so three vectors must be linearly dependent.

If 

𝑥) = [
,"&

)-&

𝛼,𝑥,

for some scalar values 𝛼&, … , 𝛼)-& ∈ ℝ , 
then we say that 𝑥&, 𝑥%, … , 𝑥) are linearly 
dependent. 



Linear independence
Vector spaces
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Question

Are the following vectors linearly dependent?

𝑥" =
1
2
3

𝑥# =
4
1
5

𝑥2=
2
−3
−1

If 

𝑥) = [
,"&

)-&

𝛼,𝑥,

for some scalar values 𝛼&, … , 𝛼)-& ∈ ℝ , 
then we say that 𝑥&, 𝑥%, … , 𝑥) are linearly 
dependent. 

Yes, they are linearly dependent because 𝑥2 = −2𝑥" + 𝑥#.



Linear independence
Vector spaces

21

Span

The span of a set of vectors {𝑥", 𝑥#, … , 𝑥!} is the set of all vectors that can be expressed as a 
linear combination of {𝑥", 𝑥#, … , 𝑥!}. That is,

span 𝑥", 𝑥#, … , 𝑥! ≡ 𝑣: 𝑣 =J
),"

!

𝛼)𝑥) , 𝛼) ∈ ℝ .

If {𝑥", 𝑥#, … , 𝑥!} is a set of n linearly independent vectors where each 𝑥) ∈ ℝ!, then 
span 𝑥", 𝑥#, … , 𝑥! = ℝ!.

In other words, any vector 𝑣 ∈ ℝ! can be written as a linear combination of 𝑥", 𝑥#, … , 𝑥!. 



Linear independence
Natural/standard basis {Q2}
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Question

Are the following vectors linearly independent?

𝑒" =
1
0
0

𝑒# =
0
1
0

𝑒2=
0
0
1



Linear independence
Natural/standard basis {Q2}
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Answer is yes:

These are the natural or standard coordinate basis vectors of ℝ2:

𝑒" =
1
0
0

𝑒# =
0
1
0

𝑒2=
0
0
1

• All (3 in ℝ2) are linearly independent (= full rank, rank definition follows). 
• You can represent any point x ∈ ℝ2 with those, by 𝑥 = 𝑥"𝑒" + 𝑥#𝑒# + 𝑥2𝑒2.
• They are normalized: 𝑒) = 1 ( definition follows).
• They are orthogonal:  𝑒)(𝑒* = 0 if 𝑖 ≠ 𝑗 (details follow).

Image: https://www.snb.ch
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Linear independence
Basis {Q2}
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Basis of a space

The basis ℬ is a set of linearly independent vectors that spans the whole 
space, meaning span ℬ = ℝ!. 

There are often multiple bases to choose from.

Natural/standard basis uses the coordinate vectors 𝒆).

A vector 𝒙 =

𝑥"
𝑥#
⋮
𝑥!

can be viewed as a list of coefficients for each basis vector

𝒙 = 𝑥"𝒆" + 𝑥#𝒆# +⋯+ 𝑥!𝒆!,

1

2

0 1
𝒙

𝒚

𝒆^

𝒆_

𝒙

𝒇^

𝒙 = 𝜉"𝒆" + 𝜉#𝒇# +⋯+ 𝜉!𝒆!.

In ℝ#:



Rank
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Definition

The column rank of a matrix 𝐴 ∈ ℝ$×! is the size of the largest subset of columns of 
𝐴 that constitute a linearly independent set. 

The row rank of a matrix 𝐴 ∈ ℝ$×! is the size of the largest subset of columns of 𝐴
that constitute a linearly independent set. 

The rank of a matrix is equal to its column rank is equal to its row rank. It is the 
dimension of its column space. 



Rank
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Examples

The column rank of a matrix 𝐴 ∈ ℝ$×! is the size of the largest subset of columns of 
𝐴 that constitute a linearly independent set. 

Examples:

𝐴 =
1 3 8
1 2 6
0 1 2

𝐵 =
1 2 3
0 4 5
0 0 6



Rank
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Examples

The column rank of a matrix 𝐴 ∈ ℝ$×! is the size of the largest subset of columns of 
𝐴 that constitute a linearly independent set. 

Examples:

𝐴 =
1 3 8
1 2 6
0 1 2

𝐵 =
1 2 3
0 4 5
0 0 6

𝑛 = 3 columns in A
𝑟 = 2 columns in A

𝑛 = 3 columns in B
𝑟 = 3 columns in B
(full rank)



Rank
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Properties

• For 𝐴 ∈ ℝ$×!, we have rank 𝐴 ≤ min(𝑚, 𝑛). If rank 𝐴 = min(𝑚, 𝑛) then 
𝐴 is said to be full rank.

• For 𝐴 ∈ ℝ$×!, we have rank 𝐴 = rank 𝐴(

• For 𝐴 ∈ ℝ$×!, 𝐵 ∈ ℝ!×4 we have rank 𝐴𝐵 ≤ min rank 𝐴 , rank 𝐵

• For 𝐴, 𝐵 ∈ ℝ$×!, we have rank 𝐴 + 𝐵 ≤ rank 𝐴 + rank 𝐵



The determinant of a square matrix 𝐴 ∈ ℝ!×!
is a function det: ℝ!×!→ ℝ,
and it is denoted |𝐴| or det 𝐴.

[𝑎""] = 𝑎""

𝑎"" 𝑎"#
𝑎#" 𝑎## = 𝑎""𝑎## − 𝑎"#𝑎#"

𝑎"" 𝑎"# 𝑎"2
𝑎#" 𝑎## 𝑎#2
𝑎2" 𝑎2# 𝑎22

=

Determinant
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Definition

green includes “+”
red includes “-”

Notation ambiguity L (context helps out):
• 𝑎 or 𝒗 = absolute value (if scalar/vector)
• |𝐴| or det 𝑨 = determinant (if matrix)



The determinant of a square matrix 𝐴 ∈ ℝ!×!
is a function det: ℝ!×!→ ℝ,
and it is denoted |𝐴| or det 𝐴.

[𝑎""] = 𝑎""

𝑎"" 𝑎"#
𝑎#" 𝑎## = 𝑎""𝑎## − 𝑎"#𝑎#"

𝑎"" 𝑎"# 𝑎"2
𝑎#" 𝑎## 𝑎#2
𝑎2" 𝑎2# 𝑎22

=

Determinant
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Definition

green includes “+”
red includes “-”

+𝑎""
𝑎## 𝑎#2
𝑎2# 𝑎22

Notation ambiguity L (context helps out):
• 𝑎 or 𝒗 = absolute value (if scalar/vector)
• |𝐴| or det 𝑨 = determinant (if matrix)



The determinant of a square matrix 𝐴 ∈ ℝ!×!
is a function det: ℝ!×!→ ℝ,
and it is denoted |𝐴| or det 𝐴.

[𝑎""] = 𝑎""

𝑎"" 𝑎"#
𝑎#" 𝑎## = 𝑎""𝑎## − 𝑎"#𝑎#"

𝑎"" 𝑎"# 𝑎"2
𝑎#" 𝑎## 𝑎#2
𝑎2" 𝑎2# 𝑎22

=

Determinant
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Definition

green includes “+”
red includes “-”

−𝑎"#
𝑎#" 𝑎#2
𝑎2" 𝑎22+𝑎""

𝑎## 𝑎#2
𝑎2# 𝑎22

Notation ambiguity L (context helps out):
• 𝑎 or 𝒗 = absolute value (if scalar/vector)
• |𝐴| or det 𝑨 = determinant (if matrix)



The determinant of a square matrix 𝐴 ∈ ℝ!×!
is a function det: ℝ!×!→ ℝ,
and it is denoted |𝐴| or det 𝐴.

[𝑎""] = 𝑎""

𝑎"" 𝑎"#
𝑎#" 𝑎## = 𝑎""𝑎## − 𝑎"#𝑎#"

𝑎"" 𝑎"# 𝑎"2
𝑎#" 𝑎## 𝑎#2
𝑎2" 𝑎2# 𝑎22

=

Determinant
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Definition

green includes “+”
red includes “-”

−𝑎"#
𝑎#" 𝑎#2
𝑎2" 𝑎22 + 𝑎"2

𝑎#" 𝑎##
𝑎2" 𝑎2#+𝑎""

𝑎## 𝑎#2
𝑎2# 𝑎22

Notation ambiguity L (context helps out):
• 𝑎 or 𝒗 = absolute value (if scalar/vector)
• |𝐴| or det 𝑨 = determinant (if matrix)



Determinant interpreted geometrically 

www.youtube.com/watch?v=Ip3X9LOh2dk

Insert footer or delete this element 33

(in standard/natural basis) The determinant | Chapter 6, Essence of linear algebra | Minute 0:00-5:30



Determinant

Image: Kolter 34

Visualization example

Consider the 2x2 matrix 𝐴 = 1 3
3 2

with row vectors 𝑎" =
1
3 and 𝑎" =

3
2 . 

The absolute value of the determinant measures the area of the 
parallelogram (gray area) given by the row vectors:

|det 𝐴| = 2 − 9 = 7.



Determinant

Image: Kolter 35

Question

How big is the (gray) area between the vectors 11 and 12 ?

1

2

0
1

Answer

Half the absolute value of the determinant measures the area of 
the triangel (gray area) between the row vectors:

0.5 det 11
1
2 =0.5 2 − 1 = 0.5.



Determinant
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Properties

1. The determinant of identity is 𝐼 = 1 (the volume of a unit hypercube is 1)
2. Given 𝐴 ∈ ℝ!×!, if we multiply a single row in A by a scalar 𝑡 ∈ ℝ, then the determinant of the new 

matrix is 𝑡 𝐴 .
3. If we exchange two rows 𝑎)( and 𝑎*(of 𝐴 then the determinant of the new matrix is − 𝐴 .
4. A matrix 𝐴 ∈ ℝ!×! has full rank if 𝐴 ≠ 0.

More Properties:
• For 𝐴 ∈ ℝ!×!, 𝐴 = |𝐴(|.
• For 𝐴, 𝐵 ∈ ℝ!×!, 𝐴𝐵 = |𝐴| |B|.
• For 𝐴 ∈ ℝ!×!, if 𝐴 = 0 we call A “singular”                                               (more details follow). 
• For 𝐴 ∈ ℝ!×!and A non-singular, 𝐴3" = 1/|𝐴| (𝐴3" definition of inverse follows).



Matrix 
multiplication
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Matrix multiplication

The product E of two matrices 𝐴 ∈ ℝ$×! and 𝐵 ∈ ℝ!×4 is

𝐴 E 𝐵 = 𝐴 𝐵 = 𝐶 ∈ ℝ$×4,

where 𝐶)* = ∑5,"! 𝐴)5𝐵5* = 𝐴)5𝐵5*.

The number of columns n in A must be equal to the number of rows n in B.

The example on the left:
𝑐"# = 𝑎""𝑏"# + 𝑎"#𝑏##
𝑐22 = 𝑎2"𝑏"2 + 𝑎2#𝑏#2

Image: Wikipedia

Matrix-matrix

Einstein notation!

Common programming notation:
matmul(A,B)
A.B
A*B
dangerous: may be pointwise multiplication
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Matrix multiplication

Example

1 0 1
0 −1 1

1 2
3
5

4
0
= 1 + 5 ?

? ?

1 0 1
0 −1 1

1 2
3
5

4
0
= 6 2

? ?

1 0 1
0 −1 1

1 2
3
5

4
0
= 6 2

2 −4

1 0 1
0 −1 1

1 2
3
5

4
0
= 6 2

−3 + 5 ?

Questions

Let  𝑣& = 1 0 −1 , 𝑣% =
1
2
3

𝑣& 𝑣%= 1 0 −1
1
2
3
= 1 − 3 = −2

𝑣% 𝑣&=
1
2
3

1 0 −1 =
1 0 −1
2 0 −2
3 0 −3

𝑣& 𝑣%=

𝑣% 𝑣&=
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Matrix multiplication
Proof

Properties

• Matrix multiplication is associative: 𝐴𝐵 𝐶 = 𝐴 𝐵𝐶

Verify for 𝑖, 𝑗 th entry with matrices 𝐴 ∈ ℝ$×!, B ∈ ℝ!×4 and 𝐶 ∈ ℝ4×6 :

𝐴𝐵 𝐶 )* = J
5,"

4

𝐴𝐵 )5𝐶5* =J
5,"

4

J
7,"

!

𝐴)7𝐵75 𝐶5*

= J
5,"

4

J
7,"

!

𝐴)7𝐵75𝐶5* =J
7,"

!

J
5,"

4

𝐴)7𝐵75𝐶5*

=J
7,"

!

𝐴)7 J
5,"

4

𝐵75𝐶5* =J
7,"

!

𝐴)7 𝐵𝐶 7* = 𝐴 𝐵𝐶 )*
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Matrix multiplication

Properties

• Matrix multiplication is associative: 𝐴𝐵 𝐶 = 𝐴 𝐵𝐶
• Distributive: 𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶
• In general (!) not communitative: 𝐴𝐵 ≠ 𝐵𝐴
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Identity Matrix

Identiy matrix

I =

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

It has the property that for all 𝐴 ∈ ℝ$×!,

𝐴𝐼 = 𝐴 = 𝐼𝐴
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Vector-vector multiplication
Matrix multiplication

Dot product / scalar product (inner product)

Given two vectors 𝑥, 𝑦 ∈ ℝ!, the inner product of x and y is written as 
⟨𝑥, ⟩𝑦 , which is also known as the dot product or scalar product (in 
Euclidean space)

𝑥(𝑦 = 𝑥" 𝑥# …𝑥!

𝑦"
𝑦#
⋮
𝑦!

=J
),"

!

𝑥)𝑦) = 𝑥"𝑦" +⋯+ 𝑥!𝑦!

Properties:
• Symmetric: 𝑥(𝑦 = 𝑦(𝑥
• Dot product of two orthogonal vectors is zero.

Possible notation variants:
• ⟨𝑥, ⟩𝑦
• 𝑥*𝑦
• 𝒙*𝒚
• �⃗� k �⃗�
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Vector-vector multiplication
Matrix multiplication

Outer product

Given two vectors 𝑥 ∈ ℝ$ and  𝑦 ∈ ℝ!, the outer product 𝑥𝑦( ∈ ℝ$×! is a 
matrix, whose entries are given by 𝑥𝑦( )* = 𝑥)𝑦)

𝑥𝑦( =

𝑥"
𝑥#
⋮
𝑥!

[𝑦" 𝑦# …𝑦!] =

𝑥"𝑦"
𝑥#𝑦" ⋯

𝑥"𝑦!
𝑥#𝑦!

⋮ ⋱ ⋮
𝑥$𝑦" ⋯ 𝑥$𝑦!
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Vector-matrix multiplication
Matrix multiplication

Given a 𝐴 ∈ ℝ$×! and a vector 𝑥 ∈ ℝ!, their product is a 
vector y = A𝑥 ∈ ℝ$.  There are different ways to understand this

By rows:  A𝑥 =
𝑎"" 𝑎"#
𝑎#" 𝑎##
𝑎2" 𝑎2#

𝑥"
𝑥# =

𝑎""𝑥" + 𝑎"#𝑥#
𝑎#"𝑥" + 𝑎##𝑥#
𝑎2"𝑥" + 𝑎2#𝑥#

By columns: A𝑥 =
𝑎"" 𝑎"#
𝑎#" 𝑎##
𝑎2" 𝑎2#

𝑥"
𝑥# = 𝑥"

𝑎""
𝑎#"
𝑎2"

+ 𝑥#
𝑎"#
𝑎##
𝑎2#

A𝑥 is a linear combination of the columns of A

𝐴𝑥 = 𝑥"𝑎" + 𝑥#𝑎#
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Vector-matrix multiplication
Matrix multiplication

Columnspace of A

Given a 𝐴 ∈ ℝ$×!, the linear combinations of the columns fill the column space of A.

Example:
If 𝐴 ∈ ℝ2×#has two linearly independent columns 𝑎" and 𝑎#, then the linear 
combination of the columns of A 

𝐴𝑥 = 𝑥"𝑎" + 𝑥#𝑎#
corresponds to any point on a plane given by 𝑎" and 𝑎#.

The columnspace is also called the range and it is defined as
the span of the columns of A:

ℛ 𝐴 = 𝑣 ∈ ℝ$: 𝑣 = 𝐴𝑥, 𝑥 ∈ ℝ! .

𝑎&

𝑎%
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Vector-matrix multiplication
Matrix multiplication

Let vector 𝒙𝒊 ∈ ℝ) be transformed by matrix 𝐴 ∈ ℝ.×) to 𝒚𝒊 ∈ ℝ.: A 𝒙𝒊 = 𝒚𝒊. 

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟒

𝒙𝟏

𝒙𝟐

𝟎

𝒙𝟒

Nullspace

Range: 𝑹(𝑨)
ℝn

ℝo



More Operations and 
(their) Properties
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Trace
Properties and operations

Trace

The trace of a square matrix 𝐴 ∈ ℝ!×!, denoted or is the sum of diagonal 
elements in the matrix:

tr𝐴 =J
),"

!

𝐴)) .

Properties:
• For 𝐴 ∈ ℝ!×!, tr𝐴 = tr𝐴(
• For 𝐴, 𝐵 ∈ ℝ!×!, tr 𝐴 + 𝐵 = tr𝐴 + tr𝐵
• For 𝐴 ∈ ℝ!×!, and 𝑡 ∈ ℝ, tr 𝑡𝐴 = 𝑡 tr𝐴
• For 𝐴, 𝐵 such that 𝐴𝐵 is square, tr𝐴𝐵 = tr𝐵𝐴
• For 𝐴, 𝐵, 𝐶 such that 𝐴𝐵𝐶 is square, tr𝐴𝐵𝐶 = tr𝐵𝐶𝐴 = tr𝐶𝐴𝐵 and so on 

(cyclic permutation property)
• Trace trick: 𝑥(𝐴𝑥 = 𝑡𝑟 𝑥(𝐴𝑥 = 𝑡𝑟(𝑥𝑥(𝐴)
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Norms

Definition of a norm

A norm is any function 𝑓:ℝ! → ℝ that satisfies four properties:
1. For all 𝑥 ∈ ℝ!, 𝑓 𝑥 ≥ 0 (non-negativity)
2. 𝑓 𝑥 = 0 if and only if 𝑥 = 0 (definiteness)
3. For all 𝑥 ∈ ℝ!, t ∈ ℝ , 𝑓 𝑡𝑥 = |𝑡|𝑓(𝑥) (homogeneity)
4. For all 𝑥, 𝑦 ∈ ℝ!, 𝑓 𝑥 + 𝑦 ≤ 𝑓 𝑥 + 𝑓(𝑦) (triangle inequality)

This is just the 
“length” of a 
vector!

𝑥 % = [
,"&

)

𝑥,%

ℓ#-Norm (Euclidian norm)

𝑥 %
% = 𝑥*𝑥

The ℓ%-Norm on ℝ) is defined for 𝑥 ∈ ℝ) as
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Norms

Taxicab/Manhattan Norm (ℓ"-Norm)

𝑥 " =J
),"

!

|𝑥)|

Image: Deisenroth

Euclidian norm (ℓ#-Norm)

𝑥 % = [
,"&

)

𝑥,%

Maximum norm (ℓ8-Norm)

𝑥 4 = max
,
|𝑥,|

𝑥!

𝑥"𝒙 !



Norms
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Common norms

Norms for vectors

𝑥 % = [
,"&

)

𝑥,%𝑥 & =[
,"&

)

|𝑥,|

ℓ&-Norm ℓ%-Norm

𝑥 4 = max
,
|𝑥,|

ℓ4-Norm ℓ5-Norm defined by 𝑝 ≥ 1

𝑥 5 = [
,"&

)

𝑥, 5
&/5

Norms for matrices exist, e.g. the Frobenius norm 𝐴 9 = 𝑡𝑟 𝐴(𝐴

With a norm, we can derive a unit vector 𝑢 = :
:
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Inverse

Definition

The inverse of a square matrix 𝐴 ∈ ℝ!×! is denoted 𝐴3", and it is the 
unique matrix such that 

𝐴3"𝐴 = 𝐼 = 𝐴𝐴3".

Note: Not all matrices have inverses (e.g., non-square matrices by 
definition do not). 

If 𝐴3"exists, then 𝐴 is invertible or non-singular.

Condition for invertibility:
• A square matrix 𝐴 is invertible if it is full rank.
• A square matrix 𝐴 is invertible if det 𝐴 ≠ 0.

Kolter
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Inverse

Properties

For square matrices 𝐴, 𝐵 ∈ ℝ!×! that are invertible, we have that
• 𝐴3" 3" = 𝐴
• 𝐴𝐵 3" = 𝐵3"𝐴3"
• 𝐴3" ( = 𝐴( 3"This is sometimes abbreviated as 𝐴3" ( = 𝐴3(.
• det 𝐴3" = det 𝐴 3"

For a 2x2 matrix we compute the inverse as:

𝐴 = 𝑎 𝑏
𝑐 𝑑 , 𝐴3" =

1
|𝐴|

𝑑 −𝑏
−𝑐 𝑎

For a block diagonal matrix, the inverse is obtained by inverting each block separately, e.g.

𝐴 0
0 𝐵

3"
= 𝐴3" 0

0 𝐵3"
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Orthogonal matrices

Orthogonal and normalized vectors

Two vectors 𝑥, 𝑦 ∈ ℝ! are orthogonal if 𝑥(𝑦 = 0.
A vector 𝑥 ∈ ℝ! is normalized if 𝑥 # = 1.

Orthogonal matrices

A square matrix 𝑈 ∈ ℝ!×! is orthogonal if all its columns are orthogonal to each other and are 
normalized. (The column vectors then are referred to as being orthonormal.) It follows that 

𝑈(𝑈 = 𝐼 = 𝑈𝑈(.

Derivation for 𝑈 ∈ ℝ2×2:
𝑢"(

𝑢#(

𝑢2(
u" 𝑢# 𝑢2 =

𝑢"(𝑢" … …
𝑢#(𝑢" 𝑢#(𝑢# …
𝑢2(𝑢" … 𝑢2(𝑢2

=
1 0 0
0 1 0
0 0 1

= 𝐼
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Orthogonal matrices

Orthogonal and normalized vectors

Two vectors 𝑥, 𝑦 ∈ ℝ! are orthogonal if 𝑥(𝑦 = 0.
A vector 𝑥 ∈ ℝ! is normalized if 𝑥 # = 1.

Orthogonal matrices

A square matrix 𝑈 ∈ ℝ!×! is orthogonal if all its columns are orthogonal to each other and are 
normalized. (The column vectors then are referred to as being orthonormal.) It follows that 

𝑈(𝑈 = 𝐼 = 𝑈𝑈(.

This means that 𝑈( = 𝑈3" (the transpose is the inverse for an orthogonal matrix).

Property: 
Operating on a vector with an orthogonal matrix will not change its Euclidean norm 𝑈𝑥 # = 𝑥 #.



Eigenvectors and 
Eigenvalues



Eigenvectors and eigenvalues
Intro
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Definition

Given a square matrix 𝐴 ∈ ℝ!×!,we say that 𝜆 ∈ ℂ is an eigenvalue of A and 𝑥 ∈ ℂ! is the corresponding 
eigenvector if 

𝐴 𝑥 = 𝜆 𝑥, 𝑥 ≠ 0.

The eigenvalues can be determined as follows:
𝐴 𝑥 = 𝜆 𝑥 = 𝜆 𝐼 𝑥,
𝐴 − 𝜆 𝐼 𝑥 = 0.

If 𝐴 − 𝜆 𝐼 had full rank, 𝑥 can never land on nullspace 0. Hence, its rank is smaller and
det 𝐴 − 𝜆 𝐼 = 0.

This leads to a polynomial equation which roots 𝜆 are the eigenvalues. Pluging a certain 𝜆) back gives 

𝐴 − 𝜆) 𝐼 𝑥) = 0,
which can be solved for the corresponding eigenvector(s) 𝑥).



Eigenvectors and eigenvalues
Summary

Image: Wikipedia
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Definition

Given a square matrix 𝐴 ∈ ℝ!×!,we say that 𝜆 ∈ ℂ is an eigenvalue of A and 
𝑥 ∈ ℂ! is the corresponding eigenvector if 

𝐴𝑥 = 𝜆𝑥, 𝑥 ≠ 0.

Characteristic equation of A to find n eigenvalues 𝜆): 
det 𝐴 − 𝜆 𝐼 = 0.

To find associated eigenvectors 𝑥), we solve the eigenvector equation 
𝐴 − 𝜆)𝐼 𝑥) = 0.

We can write all eigenvector equations simultaneously as 
𝐴𝑋 = 𝑋Λ,

where columns of 𝑋 ∈ ℝ!×! are the eigenvectors of A, 
and Λ = diag(𝜆", … , 𝜆!)

Calculation

Remark

Visualization



Eigenvectors and eigenvalues of
Example
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𝑨 = 𝟏 𝟐
𝟎 −𝟏

det 1 2
0 −1 − 𝜆 0

0 𝜆 = (1 − 𝜆) −1 1+ 𝜆 = 0 → 𝜆" = 1, 𝜆# = −1

1 − 1 2
0 −1 − 1 𝑣" =

0 2
0 −2

any
0 = 0 → 𝑣" =

1
0 (Check: 𝐴 𝑣" = 𝜆" 𝑣")

1 + 1 2
0 −1 + 1 𝑣# =

2 2
0 0

𝛼
−𝛼 = 0 → 𝑣#=

1
−1 (Check: 𝐴 𝑣# = 𝜆# 𝑣#)

𝑋= 𝑣", 𝑣# = 1 1
0 −1 → 𝑋3" = "

;<=(?)
−1 −1
0 1 = 1 1

0 −1 (Check: 𝑋 𝑋3"= 𝐼)

𝑋3"𝐴 𝑋 = 1 1
0 −1

𝟏 𝟐
𝟎 −𝟏 𝑋 = 1 1

0 1 𝑋 = 1 1
0 1

1 1
0 −1 = 1 0

0 −1 = 𝜆" 0
0 𝜆#

= diag 𝜆", 𝜆# = Λ

Eigenvalues

Eigenvector 1

Eigenvector 2

Eigenbasis

Basis transformation
decoupled system

→ great to solve differential equation systems
→ great to extract dominant features of a system

coupled system



Eigenvectors and eigenvalues
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Properties

• The trace of a matrix A is equal to the sum of its eigenvalues:      𝑡𝑟𝐴 = ∑),"! 𝜆)

• The determinant of A is equal to the product of its eigenvalues:  𝐴 = ∏),"
! 𝜆)

• If A is non-singular, then 𝐴3"𝑥) =
"
A!

𝑥).

• The eigenvalues of a diagonal matrix 𝐷 = 𝑑𝑖𝑎𝑔 𝑑", … , 𝑑! are just the diagonal entries 𝑑", … , 𝑑!.



Eigenvectors and eigenvalues
Application: Linear Stability Analysis
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8. Acoustical Results and Discussion

0 0.5 10

0.5

1

1.5

2

2.5

3

x/Lx−neck

S
t n

e
ck

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
p [Pa]

Figure 8.8: Series of DMD pressure modes inside the neck (at the neck
topside y = 0 and the spanwise neck center) ordered by their respective
Strouhal number. The x-axis is the streamwise coordinate within the neck
opening. The y-axis is Stneck. The very left column does not describe a
location of the x-axis, but is the mean of its absolute row values (average
over entire neck), thus highlighting dominant KH waves. For comparison
purposes, the dotted black and white lines are just a copy of Fig. 8.9.

118

Let				𝑨 𝑣old state= 𝑣 new state and 𝜆, be an eigenvalue of 𝑨.
𝑅𝑒𝑎𝑙(𝜆,) can be interpreted as growth rate of an eigenvector i.
𝐼𝑚𝑎𝑔(𝜆,) can be interpreted as frequency of an eigenvector i.

We found a coupling between whirls and acoustic modes of the same 
frequency.  



Eigenvectors and eigenvalues interpreted geometrically

www.youtube.com/watch?v=PFDu9oVAE-g
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Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra | Minute 0:45-10:45



Backup slides



From equation system (of scalars) to vector and matrix
Motivation

Scalar

In this example, the variables 
𝑥"and 𝑥# ∈ ℝ are scalars.

Vector

𝑥"and 𝑥# can be written as a 
vector 𝑥 ∈ ℝ! :

𝑥 =
𝑥"
𝑥#

𝑏 = −13
9

Matrix

We need to multiply 𝑥 with a 
matrix 𝐀 ∈ ℝ$×! to get b:

𝑨 = 4 −5
−2 3

4𝑥& − 5𝑥% = −13
−2𝑥& + 3𝑥% = 9 𝑨 𝑥 = 𝑏


