

Data Science Summer School

Introduction to Linear Algebra (4-hour workshop)

https://ds3.ai/2022/linear-algebra.html

July 29, 2022

Lewin Stein

These slides are adopted from **GRAD-C23** Session3: Linear Algebra (1) by Lynn Kaack.

Math foundations (selection)

- Objects: scalars, vectors, matrices, tensors
- Relations: vector space, linear independence, span, basis, rank
- Operations: transpose, determinant, matrix multiplication, trace, norm, inverse
- Preview to eigenvectors and eigenvalues (if there is still time)

There is a lot of material that one could cover for linear algebra. I recommend you to work through the readings again at your own pace.

References & Sources

Hertie School

(e)-Books

- Gilbert Strang Linear Algebra and Learning from Data 2019
- Zico Kolter Linear Algebra Review and Reference 2008 <u>www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf</u>
- Kevin P. Murphy Probabilistic Machine Learning 2022

Free* online calculator

<u>www.wolframalpha.com</u>

Videos

- Linear transformations and matrices | Chapter 3 <u>https://www.youtube.com/watch?v=kYB8IZa5AuE</u>
- The determinant | Chapter 6
 <u>https://www.youtube.com/watch?v=lp3X9LOh2dk</u>
- Inverse matrices, column space and null space | Chapter 7
 <u>https://www.youtube.com/watch?v=uQhTuRIWMxw</u>
 - Eigenvectors and eigenvalues | Chapter 14 <u>https://www.youtube.com/watch?v=PFDu9oVAE-g</u>

Basic concepts and notation

Motivation {Q3} Application 1: Rotation in 2D

A matrix is both an object but also a way to manipulate vectors. We call this manipulation **linear transformation**.

Hertie School

Motivation

Hertie School

Application 2: Machine Learning

Basic objects

Vectors

• A vector $\mathbf{x} \in \mathbb{R}^n$ is a list of n numbers. As a column vector, we write

 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

 $\boldsymbol{e}_{i} = \begin{bmatrix} 0\\ \vdots\\ 0\\ 1\\ 0\\ \vdots\\ 0 \end{bmatrix}$

Possible notation variants (no strict rule \mathfrak{S}):

- lower case (especially *x*, *y*, *z*, *v*, *w*)
- bold font ${m v}$
- vector on top $ec{\mathcal{V}}$
- underbar \underline{v}

Basic objects

Matrices

A matrix $A \in \mathbb{R}^{m \times n}$ with m rows and n columns is arranged as such:

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

We denote the entry of A in the ith row and jth column as A_{ij} .

Possible notation variants (no strict rule ⁽³⁾):
Upper case (especially *A*, *B*, *C*, *I*, *Λ*, *M*)
bold font *M*double underbar *M*

Special cases:

[<i>a</i> ₁₁	a_{12}		a_{1n}
a_{21}	a_{22}		a_{2n}
:	•	•.	:
a_{n1}	a_{n2}		a_{nn}

a_{11}	0	•••	0
0	a_{22}		0
:	•	•.	:
0	0		a_{nn}

[1	0		[0
0	1		0
:	:	•.	:
_0	0		1

Identity matrix Ones on the main diagonal and zero elsewhere

Square matrix Same number of rows and columns

Diagonal matrix Off-diagonal entries are zero

Hertie School

Matrix ordering in (linear) computer storage

Row-major order: NumPy of Python, C/C++


```
for i=0:m-1
    for j=0:n-1
        A[i,j]=0
        end
end
```

The 1st storage address is a_{11} , the 2nd is a_{12} ...

Hence \mathbf{j} of $A[\mathbf{i}, \mathbf{j}]$ is the fastest index and should be the innermost loop.

```
Column-major order: R, Julia, MATLAB, Fortran
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}
```

```
for j=1:n
    for i=1:m
        A[i,j]=0
        end
end
```

The 1st storage address is a_{11} , the 2nd is a_{21} ... Hence *i* of A[i, j] is the fastest index and should be the innermost loop. Operation

The Transpose

Given $A \in \mathbb{R}^{m \times n}$, its transpose is written $A^T \in \mathbb{R}^{n \times m}$ and it is the $n \times m$ matrix whose entries are given by

• $(AB)^T = B^T A^T$

• A square matrix $A \in \mathbb{R}^{n \times n}$ is **symmetric** if $A = A^T$, and anti-symmetric if $A = -A^T$.

Tranpose of column vector $\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_1 \end{bmatrix}$ is row vector $\boldsymbol{v}^T = [v_1, v_2, v_3]$ Transpose = Tranpose of $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$ mirror on diagonal axis is $A^T = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$

Hertie School

Tensors

A tensor is a generalization of a 2d array to more than 2 dimensions

Vector

Hertie School

Vector addition and scaling

Vector space

The elements of an **n-dimensional vector space** \mathcal{V} are the vectors $x \in \mathbb{R}^n$ (all with **n** entries). Vectors can be modified by the basic operations:

- Adding: $+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- Scaling: $\cdot : \mathbb{R} \times \mathcal{V} \to \mathcal{V}$

Operations are defined element-wise.

Examples:

$$\boldsymbol{v} + \boldsymbol{w} = (v_1 + w_1, \dots, v_n + w_n)$$

For \mathbb{R}^2 it looks like:

$$v + 2 w = (v_1 + 2w_1, \dots, v_n + 2w_n)$$

Image: Wikipedia

Excursion {Q₃} Sum symbol and Einstein notation

Sum symbol

$$\sum_{i=1}^{4} i = 1 + 2 + 3 + 4 = 10$$

$$\sum_{i=1}^{40} i = \frac{1}{2} \left((1+40) + (2+39) + \dots + (38+3) + (39+2) + (40+1) \right) = \frac{41 \times 40}{2} = 820$$

Einstein notation:

If an index occurs twice in an expression, a sum sign is placed in front of it. Therein, the index of the sum always runs over all entries (the full vector dimension). for n=3 $x_iy_i = \sum_{i=1}^n x_i y_i \stackrel{\frown}{=} x_1 y_1 + x_2 y_2 + x_3 y_3$

Hertie School

Linear independence

Definition

A set of vectors $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ is called **(linearly) independent** if no vector can be represented as a linear combination of the remaining vectors. Conversely, a vector which can be represented as a linear combination of the remaining vectors is said to be **(linearly) dependent**.

That is if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{R}$.

Linear independence

Question

Are the following vectors linearly independent?

$$x_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \qquad x_2 = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \qquad \qquad x_3 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Hertie School

Linear independence

Answer

Are the following vectors linearly dependent?

$$x_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \qquad x_2 = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \qquad \qquad x_3 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

Can we find α_1 and α_2 such that $x_3 = \alpha_1 x_1 + \alpha_2 x_2$?

If

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$
for some scalar values $\alpha_1, \dots, \alpha_{n-1} \in \mathbb{R}$,
then we say that x_1, x_2, \dots, x_n are linearly
dependent

Hertie School

$$\begin{aligned} &\alpha_1 1 + \alpha_2 1 = -3 & \Leftrightarrow \alpha_1 = -\alpha_2 - 3 \\ &\alpha_1 3 + \alpha_2 5 = 5 \end{aligned}$$

$$(-\alpha_2 - 3)3 + \alpha_2 5 = 5 /+9$$

$$\Leftrightarrow 2\alpha_2 = 14 \quad \Leftrightarrow \alpha_2 = 7$$

Plugging in $\alpha_2 = 7$ yields $\alpha_1 = -10$.

 x_1, x_2, x_3 are linearly dependent. In fact, any vector in \mathbb{R}^2 can be expressed by two linearly independent vectors, so three vectors must be linearly dependent.

Linear independence

Question

Are the following vectors linearly dependent?

$$x_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad \qquad x_2 = \begin{bmatrix} 4\\1\\5 \end{bmatrix} \qquad \qquad x_3 = \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

Yes, they are linearly dependent because $x_3 = -2x_1 + x_2$.

Hertie School

Linear independence

Span

The span of a set of vectors $\{x_1, x_2, ..., x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, x_2, ..., x_n\}$. That is,

$$\operatorname{span}(\{x_1, x_2, \dots, x_n\}) \equiv \left\{ v: v = \sum_{i=1}^n \alpha_i x_i, \alpha_i \in \mathbb{R} \right\}.$$

If $\{x_1, x_2, ..., x_n\}$ is a set of n linearly independent vectors where each $x_i \in \mathbb{R}^n$, then span $(\{x_1, x_2, ..., x_n\}) = \mathbb{R}^n$.

In other words, any vector $v \in \mathbb{R}^n$ can be written as a linear combination of $x_1, x_2, ..., x_n$.

Natural/standard basis **{Q2}** Linear independence

Question

Are the following vectors linearly independent?

$$e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Hertie School

Linear independence

Answer is yes:

These are the **natural or standard** coordinate **basis vectors** of \mathbb{R}^3 :

$$e_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad e_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \qquad e_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

All (3 in \mathbb{R}^3) are linearly independent (= full rank, rank definition follows). ٠

- You can represent any point $x \in \mathbb{R}^3$ with those, by $x = x_1e_1 + x_2e_2 + x_3e_3$.
- They are **normalized**: $||e_i|| = 1$ (|| || definition follows).
- They are **orthogonal**: $e_i^T e_j = 0$ if $i \neq j$ (details follow). •

system right-handed coordinate Zweihundert Franken

Duatschient Francs

Basis **{O2}** Linear independence

Basis of a space

The basis \mathcal{B} is a set of linearly independent vectors that spans the whole space, meaning span $(\mathcal{B}) = \mathbb{R}^n$.

There are often multiple bases to choose from.

Natural/standard basis uses the coordinate vectors e_i .

A vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ can be viewed as a list of coefficients for each basis vector

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + \dots + x_n \boldsymbol{e}_n,$$

$$\boldsymbol{x} = \xi_1 \boldsymbol{e}_1 + \xi_2 \boldsymbol{f}_2 + \dots + \xi_n \boldsymbol{e}_n.$$

Hertie School

Definition

The **column rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of A that constitute a linearly independent set.

The **row rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of A that constitute a linearly independent set.

The **rank** of a matrix is equal to its column rank is equal to its row rank. It is the dimension of its column space.

Examples

The **column rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of A that constitute a linearly independent set.

Examples:

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Examples

The **column rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of A that constitute a linearly independent set.

Examples:

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix} \qquad n = 3 \text{ columns in A} \\ r = 2 \text{ columns in A} \\ B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \qquad n = 3 \text{ columns in B} \\ r = 3 \text{ columns in B} \\ \text{(full rank)} \end{cases}$$

Properties

- For $A \in \mathbb{R}^{m \times n}$, we have rank $(A) \le \min(m, n)$. If rank $(A) = \min(m, n)$ then A is said to be **full rank**.
- For $A \in \mathbb{R}^{m \times n}$, we have $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ we have $\operatorname{rank}(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$
- For $A, B \in \mathbb{R}^{m \times n}$, we have $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

Determinant

Definition

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, and it is denoted |A| or det A.

green includes "+" red includes "-"

$$|[a_{11}]| = a_{11}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} =$$

Notation ambiguity 🙁 (context helps out):

- |a| or |v| = absolute value (if scalar/vector)
- |*A*| or det *A* = determinant (if matrix)

Determinant

Definition

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, and it is denoted |A| or det A.

green includes "+" red includes "-"

$$|[a_{11}]| = a_{11}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = +a_{11} \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$

Notation ambiguity 😕 (context helps out):

- |a| or |v| = absolute value (if scalar/vector)
- |A| or det **A** = determinant (if matrix)

Determinant

Definition

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, and it is denoted |A| or det A.

green includes "+" red includes "-"

$$|[a_{11}]| = a_{11}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = +a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$$

Notation ambiguity 😕 (context helps out):

- |a| or |v| = absolute value (if scalar/vector)
- |A| or det **A** = determinant (if matrix)

Determinant

Definition

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, and it is denoted |A| or det A.

green includes "+" red includes "-"

$$|[a_{11}]| = a_{11}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = +a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} +a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Notation ambiguity 🙁 (context helps out):

- |a| or |v| = absolute value (if scalar/vector)
- |A| or det **A** = determinant (if matrix)

Determinant interpreted geometrically

(in standard/natural basis)

The determinant | Chapter 6, Essence of linear algebra | Minute 0:00-5:30

www.youtube.com/watch?v=Ip3X9LOh2dk

Determinant

Visualization example

Consider the 2x2 matrix
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$
 with row vectors $a_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $a_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

The absolute value of the determinant measures the area of the parallelogram (gray area) given by the row vectors:

$$|\det A| = |2 - 9| = 7.$$

How big is the (gray) area between the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$?

Question

Determinant

Answer

Half the absolute value of the determinant measures the area of the triangel (gray area) between the row vectors:

$$0.5 \left| \det \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \right| = 0.5 |2 - 1| = 0.5.$$

Hertie School

Determinant

Properties

- 1. The determinant of identity is |I| = 1 (the volume of a unit hypercube is 1)
- 2. Given $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $t \in \mathbb{R}$, then the determinant of the new matrix is t|A|.
- 3. If we exchange two rows a_i^T and a_i^T of A then the determinant of the new matrix is -|A|.
- 4. A matrix $A \in \mathbb{R}^{n \times n}$ has full rank if $|A| \neq 0$.

More Properties:

- For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$.
- For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A| |B|.
- For $A \in \mathbb{R}^{n \times n}$, if |A| = 0 we call A "singular"
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$

(more details follow). (A^{-1} definition of inverse follows).

Matrix multiplication

Matrix multiplication

Matrix-matrix

The product \cdot of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is

$$A \cdot B = A B = C \in \mathbb{R}^{m \times p},$$

where $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = \begin{bmatrix} A_{ik} B_{kj} \\ Einstein notation! \end{bmatrix}$

4

The number of columns **n** in A must be equal to the number of rows **n** in B.

The example on the left:

$$c_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$c_{33} = a_{31}b_{13} + a_{32}b_{23}$$

Common programming notation: matmul(A,B) A.B A*B dangerous: may be pointwise multiplication

Matrix multiplication

Example

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+5 & 2 \\ 2 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 2 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ -3+5 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 2 & -4 \end{bmatrix}$$

Let
$$v_1 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Questions

$$v_1 v_2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 - 3 = -2$$

$$\boldsymbol{v_2} \, \boldsymbol{v_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1\\2 & 0 & -2\\3 & 0 & -3 \end{bmatrix}$$

Proof

Hertie School

Matrix multiplication

Properties

• Matrix multiplication is associative: (AB)C = A(BC)

Verify for (i, j)th entry with matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times q}$:

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} \right) C_{kj}$$
$$= \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} C_{kj} \right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{p} A_{il} B_{lk} C_{kj} \right)$$
$$= \sum_{l=1}^{n} A_{il} \left(\sum_{k=1}^{p} B_{lk} C_{kj} \right) = \sum_{l=1}^{n} A_{il} (BC)_{lj} = (A(BC))_{ij}$$

Matrix multiplication

Properties

- Matrix multiplication is associative:
- Distributive:
- In general (!) not communitative:

(AB)C = A(BC)A(B + C) = AB + AC $AB \neq BA$

Identity Matrix

Identiy matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

It has the property that for all $A \in \mathbb{R}^{m \times n}$,

$$AI = A = IA$$

Vector-vector multiplication

Dot product / scalar product (inner product)

Given two vectors $x, y \in \mathbb{R}^n$, the inner product of x and y is written as $\langle x, y \rangle$, which is also known as the dot product or scalar product (in Euclidean space)

$$x^{T}y = [x_{1} x_{2} \dots x_{n}] \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i}y_{i} = x_{1}y_{1} + \dots + x_{n}y_{n}$$

Properties:

- Symmetric: $x^T y = y^T x$
- Dot product of two orthogonal vectors is zero.

Vector-vector multiplication

Outer product

Given two vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, the outer product $xy^T \in \mathbb{R}^{m \times n}$ is a matrix, whose entries are given by $(xy^T)_{ij} = x_i y_i$

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} y_{1} y_{2} \dots y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & \cdots & x_{2}y_{n} \\ \vdots & \ddots & \vdots \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Vector-matrix multiplication

Given a $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product is a vector $y = Ax \in \mathbb{R}^m$. There are different ways to understand this

By rows:
$$Ax = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \\ a_{31}x_1 + a_{32}x_2 \end{bmatrix}$$

By columns: $Ax = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}$

Ax is a linear combination of the columns of A

$$Ax = x_1a_1 + x_2a_2$$

Vector-matrix multiplication

Columnspace of A

Given a $A \in \mathbb{R}^{m \times n}$, the linear combinations of the columns fill the column space of A.

Example:

If $A \in \mathbb{R}^{3 \times 2}$ has two linearly independent columns a_1 and a_2 , then the linear combination of the columns of A

$$Ax = x_1a_1 + x_2a_2$$

corresponds to any point on a plane given by a_1 and a_2 .

The columnspace is also called the **range** and it is defined as a_1 the span of the columns of A:

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

Matrix multiplication

Hertie School

Vector-matrix multiplication

Let vector $x_i \in \mathbb{R}^n$ be transformed by matrix $A \in \mathbb{R}^{m \times n}$ to $y_i \in \mathbb{R}^m$: A $x_i = y_i$.

More Operations and (their) Properties

Trace

Trace

The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted or is the sum of diagonal elements in the matrix:

$$\mathrm{tr}A = \sum_{i=1}^{n} A_{ii} \, .$$

Properties:

- For $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr} A = \operatorname{tr} A^T$
- For $A, B \in \mathbb{R}^{n \times n}$, tr(A + B) = trA + trB
- For $A \in \mathbb{R}^{n \times n}$, and $t \in \mathbb{R}$, tr(tA) = t trA
- For A, B such that AB is square, trAB = trBA
- For A, B, C such that ABC is square, trABC = trBCA = trCAB and so on (cyclic permutation property)
- Trace trick: $x^T A x = tr(x^T A x) = tr(x x^T A)$

Norms

Definition of a norm

A norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies four properties:

- 1. For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negativity)
- 2. f(x) = 0 if and only if x = 0 (definiteness)
- 3. For all $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (homogeneity)
- 4. For all $x, y \in \mathbb{R}^n$, $f(x + y) \le f(x) + f(y)$ (triangle inequality)

ℓ_2 -Norm (Euclidian norm)

The ℓ_2 -Norm on \mathbb{R}^n is defined for $x \in \mathbb{R}^n$ as

Norms

Taxicab/Manhattan Norm (ℓ_1 -Norm)

$$\left||x|\right|_1 = \sum_{i=1}^n |x_i|$$

Euclidian norm (ℓ_2 -Norm)

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Maximum norm (ℓ_{∞} -Norm)

$$\|x\|_{\infty} = \max_{i} |x_{i}|$$

Norms

Common norms

Norms for vectors

Norms for matrices exist, e.g. the Frobenius norm $||A||_F = \sqrt{tr(A^T A)}$

With a norm, we can derive a unit vector $u = \frac{v}{\|v\|}$

Inverse

Definition

The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} , and it is the unique matrix such that

$$A^{-1}A = I = AA^{-1}.$$

Note: Not all matrices have inverses (e.g., non-square matrices by definition do not).

If A^{-1} exists, then A is **invertible** or non-singular.

Condition for invertibility:

- A square matrix A is invertible if it is full rank.
- A square matrix A is invertible if det $A \neq 0$.

Inverse

Properties

For square matrices $A, B \in \mathbb{R}^{n \times n}$ that are invertible, we have that

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^T = (A^T)^{-1}$ This is sometimes abbreviated as $(A^{-1})^T = A^{-T}$.
- $\det A^{-1} = (\det A)^{-1}$

For a 2x2 matrix we compute the inverse as:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

For a block diagonal matrix, the inverse is obtained by inverting each block separately, e.g.

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{pmatrix}$$

Orthogonal matrices

Orthogonal and normalized vectors

Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** if $x^T y = 0$. A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$.

Orthogonal matrices

A square matrix $U \in \mathbb{R}^{n \times n}$ is **orthogonal** if all its columns are orthogonal to each other and are normalized. (The column vectors then are referred to as being orthonormal.) It follows that $U^T U = I = U U^T$.

Derivation for
$$U \in \mathbb{R}^{3 \times 3}$$
: $\begin{bmatrix} u_1^T \\ u_2^T \\ u_3^T \end{bmatrix} \begin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix} = \begin{bmatrix} u_1^T u_1 & \dots & \dots \\ u_2^T u_1 & u_2^T u_2 & \dots \\ u_3^T u_1 & \dots & u_3^T u_3 \end{bmatrix}$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Orthogonal matrices

Orthogonal and normalized vectors

Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** if $x^T y = 0$. A vector $x \in \mathbb{R}^n$ is **normalized** if $||x||_2 = 1$.

Orthogonal matrices

A square matrix $U \in \mathbb{R}^{n \times n}$ is **orthogonal** if all its columns are orthogonal to each other and are normalized. (The column vectors then are referred to as being orthonormal.) It follows that $U^T U = I = UU^T$.

This means that $U^T = U^{-1}$ (the transpose is the inverse for an orthogonal matrix).

Property:

Operating on a vector with an orthogonal matrix will not change its Euclidean norm $||Ux||_2 = ||x||_2$.

Eigenvectors and Eigenvalues

Intro

Hertie School

Eigenvectors and eigenvalues

Definition

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A and $x \in \mathbb{C}^n$ is the corresponding **eigenvector** if

$$A x = \lambda x, \qquad x \neq 0.$$

The **eigenvalues** can be **determined** as follows:

$$A x = \lambda x = \lambda I x,$$

(A - \lambda I) x = 0.

If $(A - \lambda I)$ had full rank, x can never land on nullspace 0. Hence, its rank is smaller and $det(A - \lambda I) = 0$.

This leads to a polynomial equation which roots λ are the **eigenvalues.** Pluging a certain λ_i back gives

$$(A - \lambda_i I) x_i = 0$$

which can be solved for the corresponding **eigenvector(s)** x_i .

Summary

Eigenvectors and eigenvalues

Definition

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A and $x \in \mathbb{C}^n$ is the corresponding **eigenvector** if

 $Ax = \lambda x, \qquad x \neq 0.$

Calculation

Characteristic equation of A to find n eigenvalues λ_i : det $(A - \lambda I) = 0$. To find associated eigenvectors x_i , we solve the eigenvector equation $(A - \lambda_i I)x_i = 0$.

Remark

We can write all eigenvector equations simultaneously as $AX = X\Lambda$, where columns of $X \in \mathbb{R}^{n \times n}$ are the eigenvectors of A, and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

Visualization

Image: Wikipedia

59

Hertie School

Example

Hertie School

Eigenvectors and eigenvalues of
$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

Eigenvalues

$$det \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = (1 - \lambda)(-1)(1 + \lambda) = 0 \qquad \rightarrow \qquad \lambda_1 = 1, \ \lambda_2 = -1$$
Eigenvector 1 $\begin{bmatrix} 1 - 1 & 2 \\ 0 & -1 - 1 \end{bmatrix} v_1 = \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} any \\ 0 \end{bmatrix} = 0 \qquad \rightarrow \qquad v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad (Check: A v_1 = \lambda_1 v_1)$
Eigenvector 2 $\begin{bmatrix} 1 + 1 & 2 \\ 0 & -1 + 1 \end{bmatrix} v_2 = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix} = 0 \qquad \rightarrow \qquad v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad (Check: A v_2 = \lambda_2 v_2)$
Eigenbasis

$$X = [v_1, v_2] = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \to X^{-1} = \frac{1}{\det(X)} \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \quad (\text{Check: } X X^{-1} = I)$$

$$X^{-1}AX = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \text{diag}(\lambda_1, \lambda_2) = \Lambda$$
decoupled system
$$\rightarrow \text{ great to solve differential equation systems}$$

$$\rightarrow \text{ great to extract dominant features of a system}$$

Eigenvectors and eigenvalues

Properties

- The trace of a matrix A is equal to the sum of its **eigenvalues**: $trA = \sum_{i=1}^{n} \lambda_i$
- The determinant of A is equal to the product of its **eigenvalues**: $|A| = \prod_{i=1}^{n} \lambda_i$
- If A is non-singular, then $A^{-1}x_i = \left(\frac{1}{\lambda_i}\right)x_i$.
- The **eigenvalues** of a diagonal matrix $D = diag(d_1, ..., d_n)$ are just the diagonal entries $d_1, ..., d_n$.

Application: Linear Stability Analysis

https://doi.org/10.14279/depositonce-8183

We found a coupling between whirls and acoustic modes of the same 62 frequency.

Let $A v_{\text{old state}} = v_{\text{new state}}$ and λ_i be an **eigenvalue** of A. $Real(\lambda_i)$ can be interpreted as growth rate of an eigenvector i. $Imag(\lambda_i)$ can be interpreted as frequency of an **eigenvector i.**

p [Pa]

1.5

0.5

0

-0.5

 $^{-1}$

-1.5

Eigenvectors and eigenvalues interpreted geometrically

Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra | Minute 0:45-10:45

www.youtube.com/watch?v=PFDugoVAE-g

Backup slides

Motivation

From equation system (of scalars) to vector and matrix

 $4x_1 - 5x_2 = -13$ $-2x_1 + 3x_2 = 9$

A x = b

Scalar

In this example, the variables x_1 and $x_2 \in \mathbb{R}$ are scalars.

Vector

 x_1 and x_2 can be written as a vector $x \in \mathbb{R}^n$:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Matrix

We need to multiply x with a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ to get b:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}$$