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Learning objectives this workshop Il Hertie School

e Objects: scalars, vectors, matrices, tensors
 Relations: vector space, linear independence, span, basis, rank
e Operations: transpose, determinant, matrix multiplication, trace, norm, inverse

e Preview to eigenvectors and eigenvalues (if there is still time)

There is a lot of material that one could cover for linear algebra.
| recommend you to work through the readings again at your own pace.



References & Sources MM Hertie School

(e)-Books
* Gilbert Strang - Linear Algebra and Learning from Data — 2019

* Zico Kolter - Linear Algebra Review and Reference - 2008 www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf

* Kevin P. Murphy - Probabilistic Machine Learning — 2022

Free* online calculator

« www.wolframalpha.com

Videos

* Linear transformations and matrices | Chapter 3 https://www.youtube.com/watch?v=kYB8IZasAuE

e The determinant | Chapter 6 https://www.youtube.com/watch?v=Ip3XqLOh2dk

* Inverse matrices, column space and null space | Chapter 7 https://www.youtube.com/watch?v=uQhTuRIWMxw

* Eigenvectors and eigenvalues | Chapter 14  https://www.youtube.com/watch?v=PFDugoVAE-g



http://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
http://www.wolframalpha.com/
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Motivation {Q3}
Application 1: Rotation in 2D

Vector
(2D line
of numbers)

!‘9:”/2

e | HIE
Matrix <
(2D rectangl
ofnombers) [0 T[] =[]

Vector

(after -90° Rotation)

A matrix is both an object but also a way to manipulate vectors.

We call this manipulation linear transformation.
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Motivation

Application 2: Machine Learning
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Motivation [
Application 3: Computational Fluid Dynamics

Hertie School
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http://dx.doi.org/10.13140/RG.2.2.27335.75680

Basic objects i Hertie School
Vectors

* Avectorx € R™is a list of n numbers. As a column vector, we write

Xq
X
x=|"?
Possible notation variants (no strict rule ®):
0 * lower case (especially x, vy, z, v, w)
: * bold fontD
Machine Learning slang: 0 . vectoron top1_7)
"One-hot vector” e; =|1
All zeros except for the ith 0 * underbar UV
component, which is one :
nl




Basic objects

Matrices

A matrix A € R™*™ with m rows and n columns is arranged as such:

We denote the entry of A in the ith row and jth column as 4.

Special cases:

(11
azq

| An1

Square matrix

aip
aso

An2

| Am1

Same number of rows

and columns

Am2

Diagonal matrix
Off-diagonal entries are zero

Hertie School

Possible notation variants (no strict rule ®):
* Upper case (especially A, B, C, I, A, M)

« bold font M

* double underbar M

o -

_ O

oI

Identity matrix

Ones on the main diagonal and

zero elsewhere




Programming excursion I Hertie School

Matrix ordering in (linear) computer storage

Row-major order: NumPy of Python, C/C++ for i=0:m-1

aiq ai ...4a1n' for j=03n—1
A= |2 = AL, 31=0
! —— —_— end
AmT  Am2 Amn_ end

The 15t storage address is a1, the 2"is a4,...

Hence j of Ali, j] is the fastest index and should be the innermost loop.

Column-major order: R, Julia, MATLAB, Fortran for j=1:n
[A11 4012 A A1n] for i=1:m
4= |92/ P2z d2n A[i,3]]=0
' : : end
_agnl Am2 Amn | end

The 15t storage address is a1, the 2"is a,;...

Hence i of A[i, j] is the fastest index and should be the innermost loop.



Operation

The Transpose

11Il Hertie School

Given A € R™™ its transpose is written AT € R™™ and it is the nxm

matrix whose entries are given by

(AN)i; = 4.
Transpose =
flipping rows
. and columns
Properties:
(AT =4

* (A+B)'=A"+B"
* (AB)" = BTA"

A square matrix A € R™" is symmetricif A =

and anti-symmetricif A = —AT.

U1
Tranpose of column vector v = [Uz‘
U3

is row vector v! = [vy, vy, V3]
Transpose =

Mirror on

0 2
T f A=
ranpose o [—2 O] diagonal axis

s A=y

AT



Basic objects i Hertie School
Tensors

A tensor is a generalization of a 2d array to more than 2 dimensions

Vector

Matrix Tensor

R64 RSXS ]R4X4X4

Source: Murphy (2022) 13
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Vector spaces il Hertie School
Vector addition and scaling

Vector space

The elements of an n-dimensional vector space V are the vectors x € R™ (all with n entries).
Vectors can be modified by the basic operations:

 Adding: +: V XV -V
* Scaling:-: RXV >V

For R? it looks like:
Operations are defined element-wise.

V V+W
Examples:
v+w= vy +wy.., v+ w,)

W

V+ 2w = v+ 2wy, ..,V + 2w,) V: V;ﬁw

Image: Wikipedia 2 W 15




Excursion {Q3} il Hertie School
Sum symbol and Einstein notation

Sum symbol
4
z i=1+2+3+4=10
i=1
40 1 41x40
z l=§((1+40)+(2+39)+'°°+(38+3)+(39+2)+(40+1))= > = 820
i=1

Einstein notation:
If an index occurs twice in an expression, a sum sign is placed in front of it.

Therein, the index of the sum always runs over all entries (the full vector dimension).
for n=3

XiVi = Xrq X YVi = Xy y1+ XY + X33

Insert footer or delete this element 16



Vector spaces IMi Hertie School
Linear independence

Definition

A set of vectors {xq, x5, ..., x,} € R™ is called (linearly) independent if no
vector can be represented as a linear combination of the remaining vectors.
Conversely, a vector which can be represented as a linear combination of
the remaining vectors is said to be (linearly) dependent.

n-—1

That is if
Xn = Z a;Xi

1=

for some scalar values a4, ..., ;-1 € R.

17



Vector spaces

Linear independence

Question

Are the following vectors linearly independent?

a=l] w-ll

a=[3

1N Hertie School

n-1

Xn = Z al-xl-

i=1

for some scalarvaluves a4, ..., a1 ER,
then we say that x4, x5, ..., x,, are linearly
dependent.

18




Vector spaces 11l Hertie School

Linear independence

If
n-—1
Answer x, = z 2%,
Are the following vectors linearly dependent? i=1
. = [1] _ [1] o = —3] for some scalarvalues a4, ..., a,_; € R,
1713 2715 3715 then we say that x4, x», ..., x,, are linearly
dependent.
Can we find @y and a, suchthat x3 = ayx; + a,x, ?
al+a,l=-3 S a;=—a,—3

a3+ a,5=5

(—a2—3)3+a25=5 /+9
= 2“2 = 14 = A= 7
Plugging in oy = 7 yields aq = —10.

X1, X5, X3 are linearly dependent. In fact, any vector in R? can be expressed by two linearly

independent vectors, so three vectors must be linearly dependent. "



Vector spaces

Linear independence

Question

Are the following vectors linearly dependent?

Yes, they are linearly dependent because x3 = —2x; + x,.

1N Hertie School

n-1

Xn = Z a;Xi

i=1

for some scalarvaluves a4, ..., a1 ER,
then we say that x4, x5, ..., x,, are linearly
dependent.

20




Vector spaces IMi Hertie School
Linear independence

Span

The span of a set of vectors {x4, x5, ..., X, } is the set of all vectors that can be expressed as a
linear combination of {x4, x5, ..., x, }. That is,

n
span({xq, x5, ..., X, }) = {v: V= z a;x;,q; € [P%}.

i=1

If {x1, x5, ..., X5} is asetof nlinearly independent vectors where each x; € R", then
span({xq, x5, ..., x,}) = R™,

In other words, any vector v € R™ can be written as a linear combination of x{, x,, ..., x,.

21



Natural/standard basis {Q2} I Hertie School
Linear independence

Question

Are the following vectors linearly independent?

el

22



Natural/standard basis {Q2} I Hertie School
Linear independence

Answer is yes:

These are the natural or standard coordinate basis vectors of R3:

el

« All(3in R3) are linearly independent (= full rank, rank definition follows).
*  You can represent any point x € R3 with those, by x = x;e; + x,e, + x3e3.

* They are normalized: ||¢;|| = 1 (| || definition follows).

* They are orthogonal: ¢/ e; = 0 if i # j (details follow).

Image: https://www.snb.ch

coordinate system

right-handed



Basis {Q2} il Hertie School
Linear independence

: In R?:
Basis of a space

The basis B is a set of linearly independent vectors that spans the whole y
space, meaning span(B) = R".

There are often multiple bases to choose from.

Natural/standard basis uses the coordinate vectors e;.

f2

A vectorx = can be viewed as a list of coefficients for each basis vector

X = X1€1 + Xy€- + .-+ Xn€n,

xX=¢e+&f,+ -+ e

24



111l Hertie School
Rank

Definition

The column rank of a matrix A € R™*" is the size of the largest subset of columns of
A that constitute a linearly independent set.

The row rank of a matrix A € R"™*" is the size of the largest subset of columns of A
that constitute a linearly independent set.

The rank of a matrix is equal to its column rank is equal to its row rank. It is the
dimension of its column space.

25



1N Hertie School
Rank

Examples

The column rank of a matrix A € R™*" is the size of the largest subset of columns of
A that constitute a linearly independent set.

Examples:
1 3 8
A=1|1 2 6]
0 1 2
1 2 3
B=1|0 4 5‘
0 0 6

26



Rank

Examples

The column rank of a matrix A € R™*" is the size of the largest subset of columns of
A that constitute a linearly independent set.

Examples:

(\S)

(\S)

O

n = 3 columnsin A
r = 2 columnsinA

n = 3 columnsinB

r = 3 columnsin B
(full rank)

Hertie School

27



111l Hertie School
Rank

Properties

« ForA € R™" we have rank(4) < min(m, n). If rank(A) = min(m, n) then
A is said to be full rank.

* ForA € R™™ we have rank(4) = rank(47)
* ForA € R™"™ B € R™P we have rank(4B) < min(rank(A), rank(B))

 ForA,B € R™"™ we have rank(4 + B) < rank(A4) + rank(B)

28



NI Hertie School
Determinant

Definition

Notation ambiguity ® (context helps out):
* |a| or |v| = absolute value (if scalar/vector)
* |A| or det A = determinant (if matrix)

The determinant of a square matrix A € R™"
is a function det: R™"— R,

and itis denoted |A| or det A.

=a
green includes “+" HQQ“ 11
red includes “-”
ai1 412
a% = Q11022 — A12071

lan aip a13‘

aszq1 dzz dz3

29



NI Hertie School
Determinant

Definition

The determinant of a square matrix A € R™" Notation ambiguity ® (context helps out):
is 3 function det: R™ "> R * |a| or |v| = absolute value (if scalar/vector)
- !/

and it is denoted |A| or det 4 * |A| or det A = determinant (if matrix)

=a
green includes “+" HQQ“ 1
red includes "-”
a1 412
a% = A11022 — Q12023

a1 |

- a _ Apo 0423
%23 = +a; Gz Qs
as 33

30



NI Hertie School
Determinant

Definition

The determinant of a square matrix A € R™" Notation ambiguity ® (context helps out):
is 3 function det: R™ "> R * |a| or |v| = absolute value (if scalar/vector)
- !/

and it is denoted |A| or det 4 * |A| or det A = determinant (if matrix)

: = a
green includes “+" HQQ“ 1
red includes "-”
ai1 4121 _
a, ]| T G11822 — Q12021

Apo A3 a1 dp3
—aq3

= +a ”
llas, ass azq1 dsz3

a2
a,1 a
as az3

31



NI Hertie School
Determinant

Definition

The determinant of a square matrix A € R™" Notation ambiguity ® (context helps out):
is 3 function det: R™ "> R * |a| or |v| = absolute value (if scalar/vector)
- !/

and it is denoted |A| or det 4 * |A| or det A = determinant (if matrix)

=a
green includes “+" HQQ“ 1
red includes “-”
”011 a12” Qoo — Qo
a% = Q11032 — 12021
ai3
e = el el ) e [ )
as 2 . llas, ass 120laz; ass3 13 [laz; as;

32



il Hertie School
Determinant interpreted geometrically

(in standard/natural basis) The determinant | Chapter 6, Essence of linear algebra | Minute 0:00-5:30

www.youtube.com/watch?v=Ip3XgLOh2dk

Insert footer or delete this element 33



111l Hertie School

Determinant

Visualization example

Consider the 2x2 matrix 4 = [; ;]
with row vectors a; = E] and a; = B] :

The absolute value of the determinant measures the area of the
parallelogram (gray area) given by the row vectors:

|detA| =|2-9|=7.

Image: Kolter



Determinant

Question

How big is the (gray) area between the vectors [ﬂ and B] ?

Answer

Half the absolute value of the determinant measures the area of
the triangel (gray area) between the row vectors:

0.5 |det [1 ;” —05(2—1| = 0.5.

Image: Kolter

1N Hertie School
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11Il Hertie School
Determinant

Properties

The determinant of identity is |I| = 1 (the volume of a unit hypercube is 1)
Given A € R™" if we multiply a single row in A by ascalart € R, then the determinant of the new
matrix is t|A].

3. If we exchange two rows a; and ajTofA then the determinant of the new matrix is —|A]|.

4. A matrix A € R™" has full rank if |A| # 0.

More Properties:

* ForA € R™™ |A| = |AT].

 ForA,B € RV", |AB| = |A] |B].

* ForA € R™", if |A| = 0 we call A“singular” (more details follow).

* For A € R™Mand A non-singular, |A™1| = 1/|A]| (A~ definition of inverse follows).

36
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NI Hertie School

Matrix multiplication | |
Common programmling notation:

matmul (A, B)

A.B

A*B

dangerous: may be pointwise multiplication

Matrix-matrix

The product - of two matrices A € R™ ™ and B € R™*P is

A-B=AB=CER™®,

— n —
where Cl] = Zk=1 AikBkj = AikBkj'
Einstein notation!

B
b, ,
b,
|l =
O

b2,3
The number of columns n in A must be equal to the number of rows n in B. —
a; . |a, %
The example on the left:
C1p = a11b12 + alzbzz A Ay 1|9,
C33 = A31D13 + a32D23 331 |33, Ee—— O
3,1 3,2
ds,1 | Q4,2
Image: Wikipedia —— 3 —




i1 Hertie School
Matrix multiplication

Example
. 1
ll 0 11[3 i:l1+5 ?] let v, =[1 0 —1], vzzH
[1 0 1 % AZL_—[6 2] Questions
0 -1 g 4] 7 7 1
- - 171172=[1 0 —1][2}:1—3:—2
10 113 i:[ 6 7 3
1 2 1 1 0 -1
1 0 1 6 2
[0 1 1] 4—[2 _4] nr=2|[1 0 -1]=(2 0 -2
5 0] 3 3 0 -3

39



Proof

Matrix multiplication

Properties
* Matrix multiplication is associative: (AB)C = A(BC)

Verify for (i, j)th entry with matrices A € R™" B € R™*P and C € RP*4 :

((AB)C)U- = Zp:(AB)ikaj = zp: (Zn: AilBlk> Cxj
k=1 =1 \I=
= zp: <Zn: AilBlka]> z (Z AuBlka]>
k=1 \1=1

n p
=2Ail< lka1> ZALI(BC)IJ (A(BC))-
k

NI Hertie School
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Matrix multiplication

Properties

* Matrix multiplication is associative:
* Distributive:
* In general () not communitative:

(AB)C = A(BC)
A(B+C) = AB + AC
AB # BA

NI Hertie School
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1N Hertie School
Identity Matrix

Identiy matrix

1 0 0
=1 T
0 0 1

It has the property that for all A € R™ ",

Al =A=1A

42



Matrix multiplication I Hertie School
Vector-vector multiplication

Dot product / scalar product (inner product)

Given two vectors x, y € R", the inner product of x and y is written as
(x,y), which is also known as the dot product or scalar product (in
Euclidean space)

(V1] n
Ty — Yz _ _
X'y = [x1 %3 ... %] A 2 Xi¥i = X1Y1 t "+ XnYn Possible notation variants:
| Vn. =1 © (L)
T
] * x
Properties: . xT;II
e Symmetric: xTy = yTx . %7

* Dot product of two orthogonal vectors is zero.

43



Matrix multiplication

Vector-vector multiplication

Outer product

Given two vectors x € R™ and y € R", the outer product xy” € R™™ is a
matrix, whose entries are given by (xyT)l-j = X;V;

Xy

[V1 Y2 - Vnl

[ X1Y1
X2V1

[ XmY1

X1Yn |
X2¥Vn

XmYn

NI Hertie School
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Matrix multiplication

Vector-matrix multiplication

Givena A € R™ ™ and a vector x € R", their product s a
vectory = Ax € R™. There are different ways to understand this

ai a11X1 T A12X7
a21 azo [ ] Ap1X1 T+ Ap2Xp

By rows: Ax =
31 32 a31x1 T azzXx;
11 412 a12
By columns: Ax = Cl21 azz [ ]—xl az1 + x5 azz]
a31 a31 asz

Ax is a linear combination of the columns of A

Ax = xq1a4 + x50,

NI Hertie School
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Matrix multiplication I

Vector-matrix multiplication

Columnspace of A

Givena A € R™*", the linear combinations of the columns fill the column space of A.

Example:
If A € R3*%has two linearly independent columns a; and a,, then the linear
combination of the columns of A
Ax = x1a4 + x50,
corresponds to any point on a plane given by a4 and a,.

The columnspace is also called the range and it is defined as ¢,
the span of the columns of A: T

R(A) ={v e R™v=Ax,x € R"}.

Hertie School

-

v
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Matrix multiplication I Hertie School
Vector-matrix multiplication

Let vector x; € R™ be transformed by matrix A € R™™" toy; € R™: Ax; =Y.
R"™ Range: R(A)
/ X2
X1
Nullspace
X4 /
X3

47
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More Operations and
(their) Properties



Properties and operations 11l Hertie School
Trace

Trace

The trace of a square matrix A € R™", denoted or is the sum of diagonal
elements in the matrix:
n
trd = Z Aii .
Properties: =1
* ForA € R™™" trd = trA”

* ForA,B € RY" tr(A+ B) = trA + trB

 ForA € R™" andt € R, tr(tA) = t trA

* For A4, B such that AB is square, trAB = trBA

* For 4, B, C such that ABC is square, trABC = trBCA = trCAB and so on
(cyclic permutation property)

* Trace trick: xTAx = tr(xTAx) = tr(xxT A)

49



Norms

Definition of a norm

A norm is any function f: R™ — R that satisfies four properties:

1. Forallx € R", f(x) = 0 (non-negativity)

2. f(x) =0ifandonlyif x = 0 (definiteness)

3. Forallx e R*, te R , f(tx) = |t|f(x) (homogeneity)

4. Forallx,y e R, f(x +vy) < f(x)+ f(y) (triangle inequality)

£,-Norm (Euclidian norm)
The £,-Norm on R" is defined for x € R" as

n This is just the
“length” of a
Ixll, = | ) 2 ot
= vector:
G
Ix]13 = x"x

NI Hertie School
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Norms

. i —— k Collection '
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111l Hertie School
Norms

Common norms

Norms for vectors

£,-Norm f0o-Norm £,-Norm defined by p > 1

n 1/p
Ielleo = max|l  [lxl] = (Zw)
i=1

£1-Norm

n
lxl], = ) 1l Ixll, =
i=1

1=
=,

Norms for matrices exist, e.g. the Frobenius norm  ||A||r = +/tr(ATA)

v

With a norm, we can derive a unit vector u = ol

52



11Il Hertie School
Inverse

Definition

The inverse of a square matrix A € R™" is denoted A, and it is the

unique matrix such that
A7lA=1=44A"1.

Note: Not all matrices have inverses (e.g., non-square matrices by
definition do not).

If A~ Lexists, then A is invertible or non-singular.
Condition for invertibility:

* Asquare matrix 4 is invertible if it is full rank.
* Asquare matrix 4 is invertible if det A # O.

Kolter 53



11Il Hertie School
Inverse

Properties

For square matrices 4, B € R™ " that are invertible, we have that

o (A—l)—l — A

« (AB)"1 = B~141

e (A™HT = (A7)~ 1 This is sometimes abbreviated as (A™1)T = 47T.
« detA ! = (det 4)71

For a 2x2 matrix we compute the inverse as:

1 _
4= (g Z)' AT = m(—dc ab)

For a block diagonal matrix, the inverse is obtained by inverting each block separately, e.qg.

(G5 =C0 5

54



Il Hertie School
Orthogonal matrices

Orthogonal and normalized vectors

Two vectors x, y € R™ are orthogonal if xTy = 0.
A vector x € R" is normalized if || x]|[, = 1.

Orthogonal matrices

A square matrix U € R™" is orthogonal if all its columns are orthogonal to each other and are
normalized. (The column vectors then are referred to as being orthonormal.) It follows that

Uru=1=U0UT.
]| (u{ Uy
Derivation for U € R3*3:  [ul | [u; uy us] = |ulu; ulu,
| ul) ulu; .. ulug)
1 0 O
=10 1 0|=1I
0O 0 1 55



Il Hertie School
Orthogonal matrices

Orthogonal and normalized vectors

Two vectors x, y € R™ are orthogonal if xTy = 0.
A vector x € R" is normalized if || x]|[, = 1.

Orthogonal matrices

A square matrix U € R™" is orthogonal if all its columns are orthogonal to each other and are

normalized. (The column vectors then are referred to as being orthonormal.) It follows that
utu =1=UUT.

This means that UT = U~1 (the transpose is the inverse for an orthogonal matrix).

Property:
Operating on a vector with an orthogonal matrix will not change its Euclidean norm [|Ux||, = ||x||5.

56
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Intro il Hertie School
Eigenvectors and eigenvalues

Definition
Given a square matrix A € R™*" we say that A € C is an eigenvalue of A and x € C" is the corresponding

eigenvector if
Ax = Ax, x # 0.

The eigenvalues can be determined as follows:
Ax=Ax=A11x,
(A—-A1)x=0.

If (A — A1) had full rank, x can never land on nullspace 0. Hence, its rank is smaller and
det(4 — A1) = 0.

This leads to a polynomial equation which roots A are the eigenvalues. Pluging a certain 4; back gives

(A -4 1) x; =0,

which can be solved for the corresponding eigenvector(s) x;.
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summary il Hertie School
Eigenvectors and eigenvalues

Definition
Given a square matrix A € R™*" we say that A € Cis an eigenvalue of A and
x € C"is the corresponding eigenvector if

Ax = Ax, x # 0. Visualization

CaICUIatlon Image: Wikipedia

Characteristic equation of A to find n eigenvalves4;:
det(A— A1) = 0. R WD S

-------------------------
.........................

To find associated eigenvectors x;, we solve the eigenvector equation ~ iliiiiIiiiiiiiIiiiiIiInl

(4= Abx =0 SRR St
Remark SR S

-------------------------

-------------------------

We can write all eigenvector equations simultaneouslyas ~ lirTiiiiiiiiiiiiiiiiiii

-------------------------

AX = XA, RS S W

where columns of X € R™ " are the eigenvectors of A, piiIIIIIIIIpIIINIIIII
and A = diag(44, ..., 4,,)



Example L o IMi Hertie School
Eigenvectors and eigenvalues of 4 = [0 _1]

Eigenvalues coupled system

det([y 2] -2 ) =a-nEna+n=o S A=1, 2, =—

Eigenvector 1 [1 E 1 _12_ 1] v, = [8 _2] [any =0 - v = [(1)] (Check: Avy = vy)

Eigenvector 2 [1 ‘(')‘ 1 _12+ 1] Uy = [(2) 2] [ @ ] =0 - v,= ’ 1 ] (Check: A v, =1, ;)

Eigenbasis

X=[v1,v2]=[(1) 1] - X 1=

- [0 Tl-lo L] checkxxin

det(X)

Y | RV T P [FY N T ) e

/ / decoupled system

Basis transformation — great to solve differential equation systems
— great to extract dominant features of a system



Il Hertie School
Eigenvectors and eigenvalues

Properties

« The trace of a matrix A is equal to the sum of its eigenvalues: trd = Y1, 1,

« The determinant of A is equal to the product of its eigenvalues: |A| = [[}L; 4;

 IfAisnon-singular, then A™1x; = (%) X;.
l

* The eigenvalues of a diagonal matrix D = diag(d4, ..., d,,) are just the diagonal entries dy, ..., d,.
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Application: Linear Stability Analysis N Hertie School

Eigenvectors and ei

0.04 f'

0
-0.04
-0.08 -

-0.12 F

https://doi.org/10.14279/depositonce-8183

gepvalues

80

Let A Vygstate = Vnewstate aNd A; be an eigenvalue of A.
Real(4;) can be interpreted as growth rate of an eigenvector i.
Imag(A;) can be interpreted as frequency of an eigenvector i.

40

-20

-40
We found a coupling between whirls and acoustic modes of the same

frequency. o



il Hertie School
Eigenvectors and eigenvalues interpreted geometrically

Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra | Minute 0:45-10:45

www.youtube.com/watch?v=PFDugoVAE-g
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11 Hertie School

Backup slides



Motivation Il Hertie School
From equation system (of scalars) to vector and matrix

4‘x1 - sz == _13

_2x1+3x2:9 Ax:b
Scalar Vector Matrix
In this example, the variables x1and x, can be written as a We need to multiply x with a
xiand x, € R are scalars. vectorx € R": matrix A € R™*" to get b:

v = 1) a=5 3
—13

bz[g]



