Natural Language Processing

Topic Models

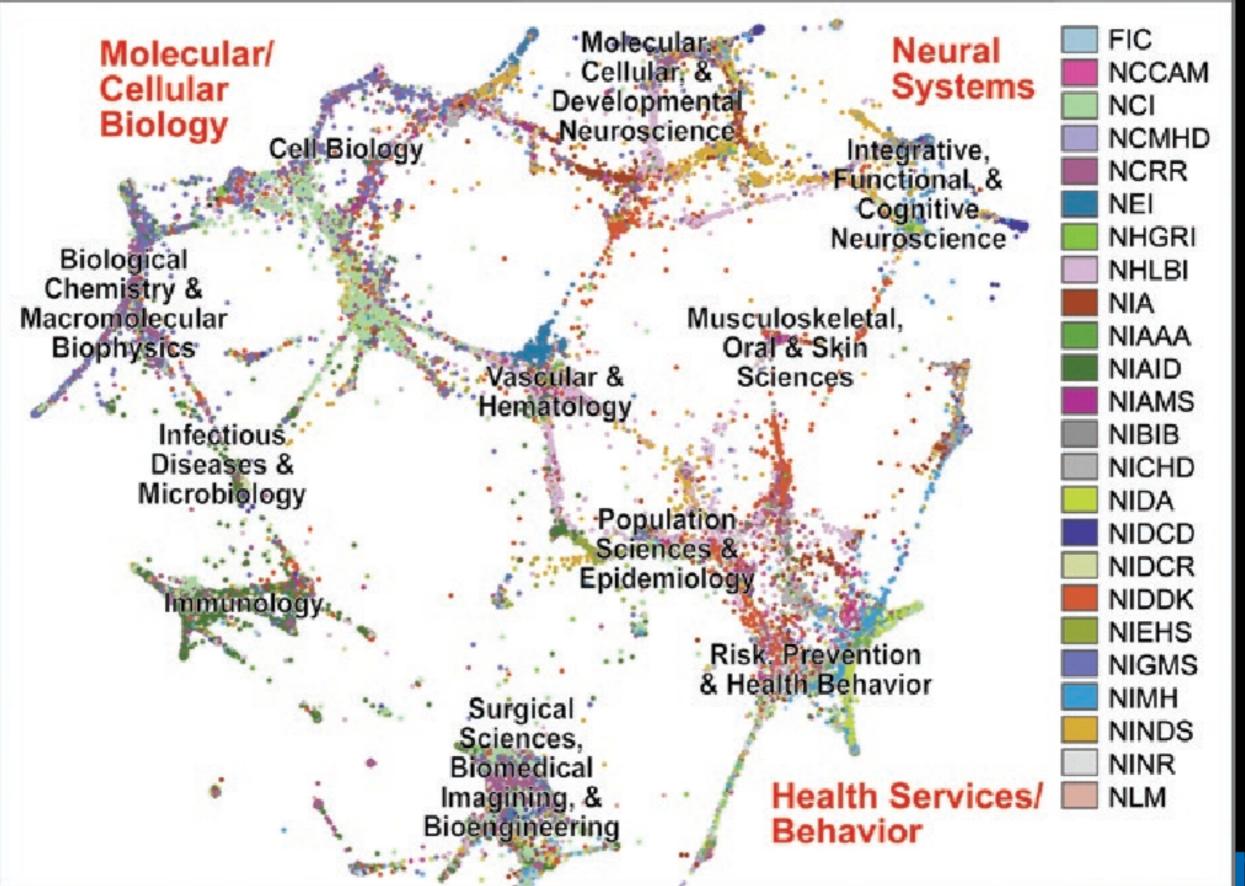
Dirk Hovy

dirk.hovy@unibocconi.it

Goals for Today

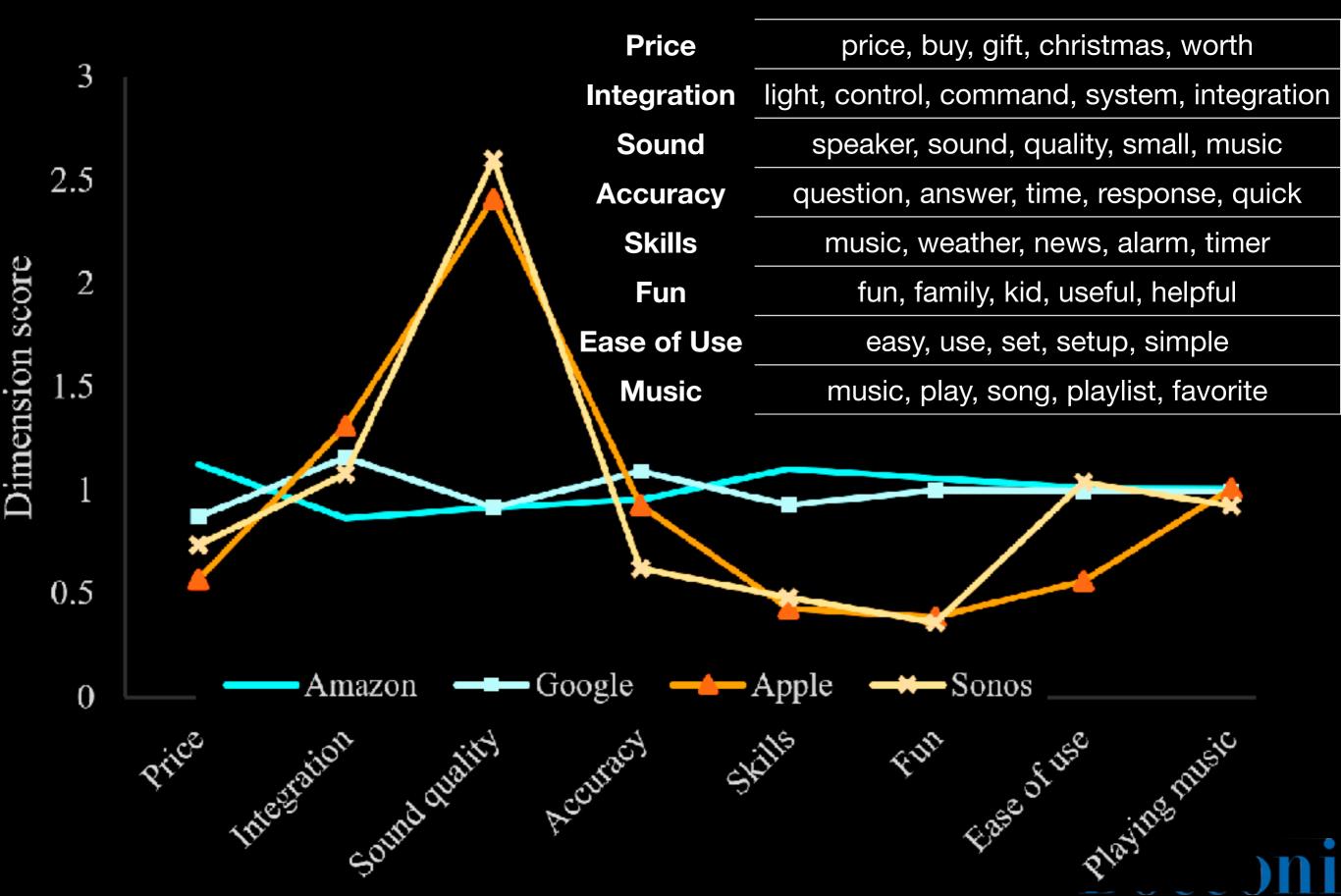
- Understand what information topic models can and can not provide
- Learn about the Latent Dirichlet Allocation (LDA) model
- Understand the parameters influencing the output
- Learn about the Structured Author Topic Model
- Learn about evaluation criteria

What Gets Funded?



Nguyen & Hovy (2019)

What do People Want in Smart Devices?



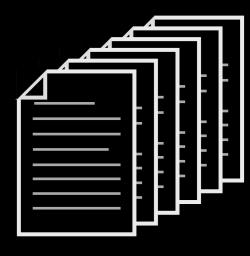
Topics are Word Lists

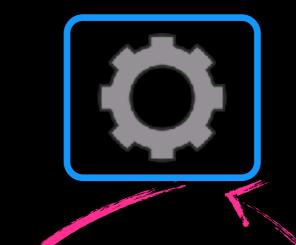
TOPIC OR NOT?

- "pasta, pizza, wine, sauce, spaghetti"
- "BLEU, Bert, encoder, decoder, transformer"

SOME DOMAIN KNOWLEDGE REQUIRED ...

How to use Topic Models





[pasta, pizza, wine, sauce, spaghetti]

FOOD

preprocess

- find best #topics
- find best parameters
- check output

choose top 5 words

Preprocessing

Preprocessing

- Be aggressive:
 - lemmatization,
 - stopwords,
 - replace numbers/user names,
 - join collocations
 - use TFIDF
- use minimum document frequency 10, 20, 50, or even 100
- use maximum document frequency 50% 10%

<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>

GOAL: MINIMIZE VARIATION

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it. I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I've been in New York in
2011, but didn't like
it.

I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I 've been in New York
in 2011 , but did n't
like it .

I preferred Los Angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

i 've been in new york
in 0000 , but did n't
like it .

i preferred los
angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

i have be in new york in 0000, but do not like it.

i prefer los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

- i new york 0000 , like .
- i prefer los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems

prefer los angeles

new york 0000 like

CONTENT = (NOUN, VERB, NUM)

- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

nrofor log angolog

new york 0000 like

prefer los_angeles

<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>

"BAG OF WORDS" V new_york 0000 like

prefer los_angeles

MINIMAL

VARIATTON

Representing Text

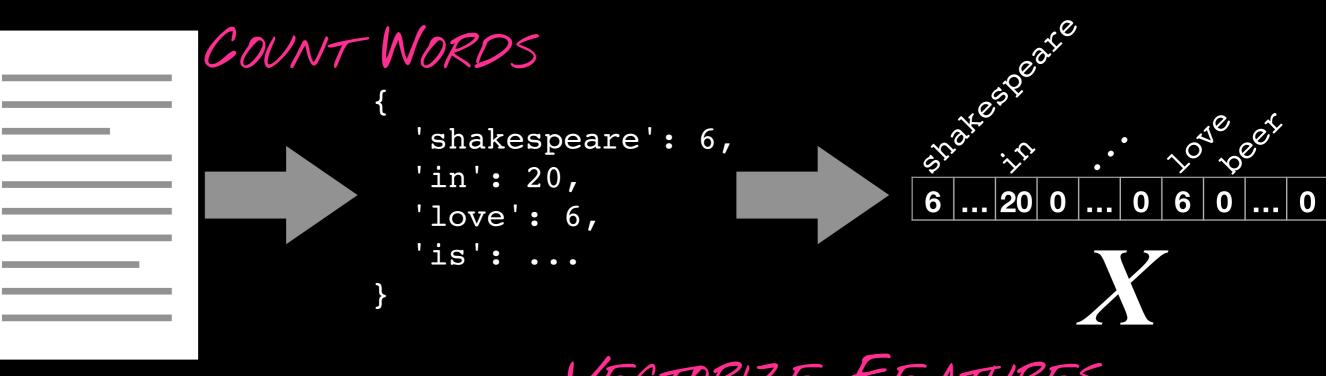
N-grams

"As Gregor Samsa awoke one morning from uneasy dreams, he found himself transformed in his bed into a gigantic insect-like creature."

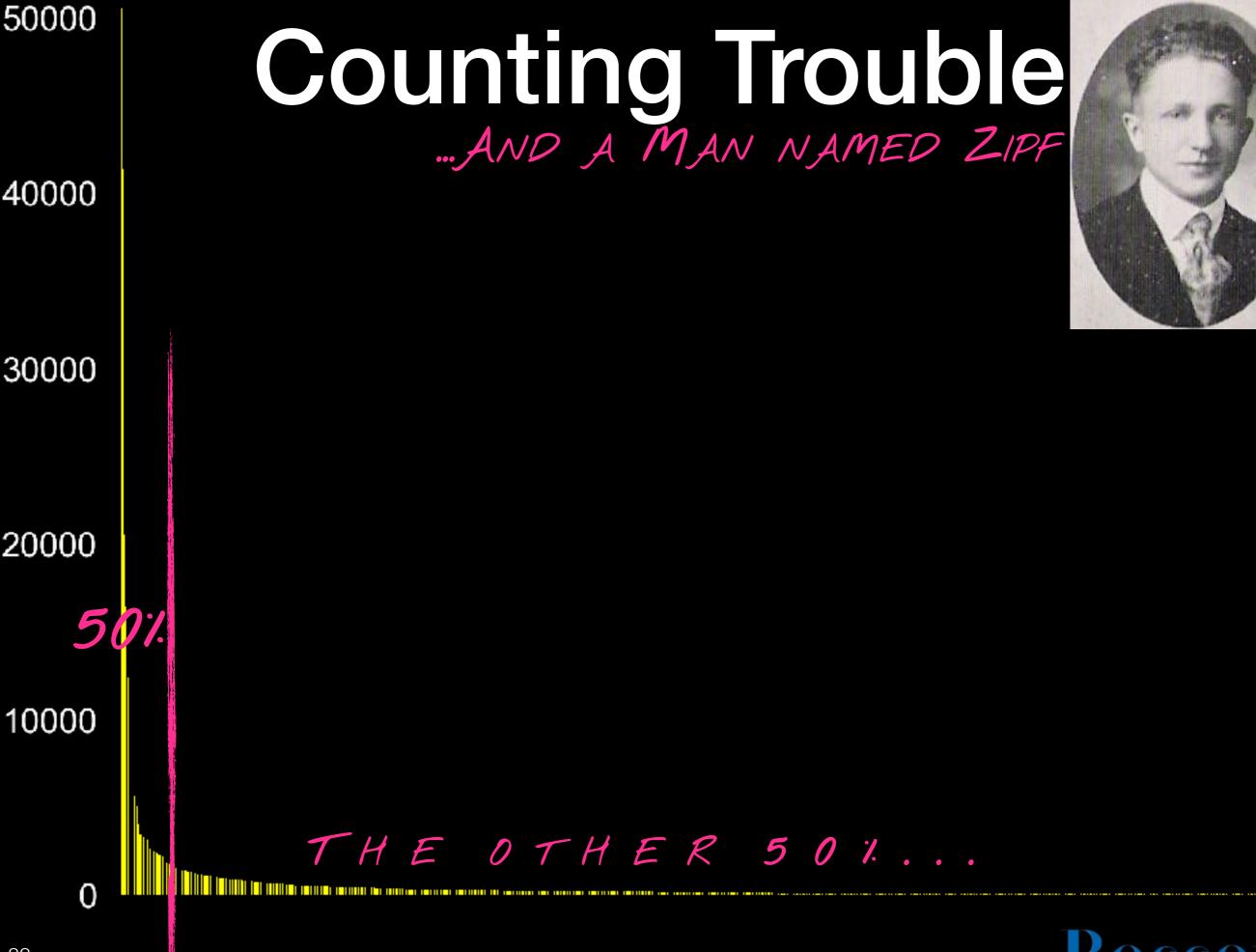
Unigrams As, Gregor, Samsa, awoke, one, morning, from, uneasy, dreams, ...

- Bigrams As_Gregor, Gregor_Samsa, Samsa_awoke, awoke_one, one_morning, ...
- Trigrams As_Gregor_Samsa, Gregor_Samsa_awoke, Samsa_awoke_one, awoke_one_morning, ...
- 4-grams As_Gregor_Samsa_awoke, Gregor_Samsa_awoke_one, Samsa_awoke_one_morning, ...

Bags of words (BOW)



VECTORIZE FEATURES



Finding Important Words: TF-IDF

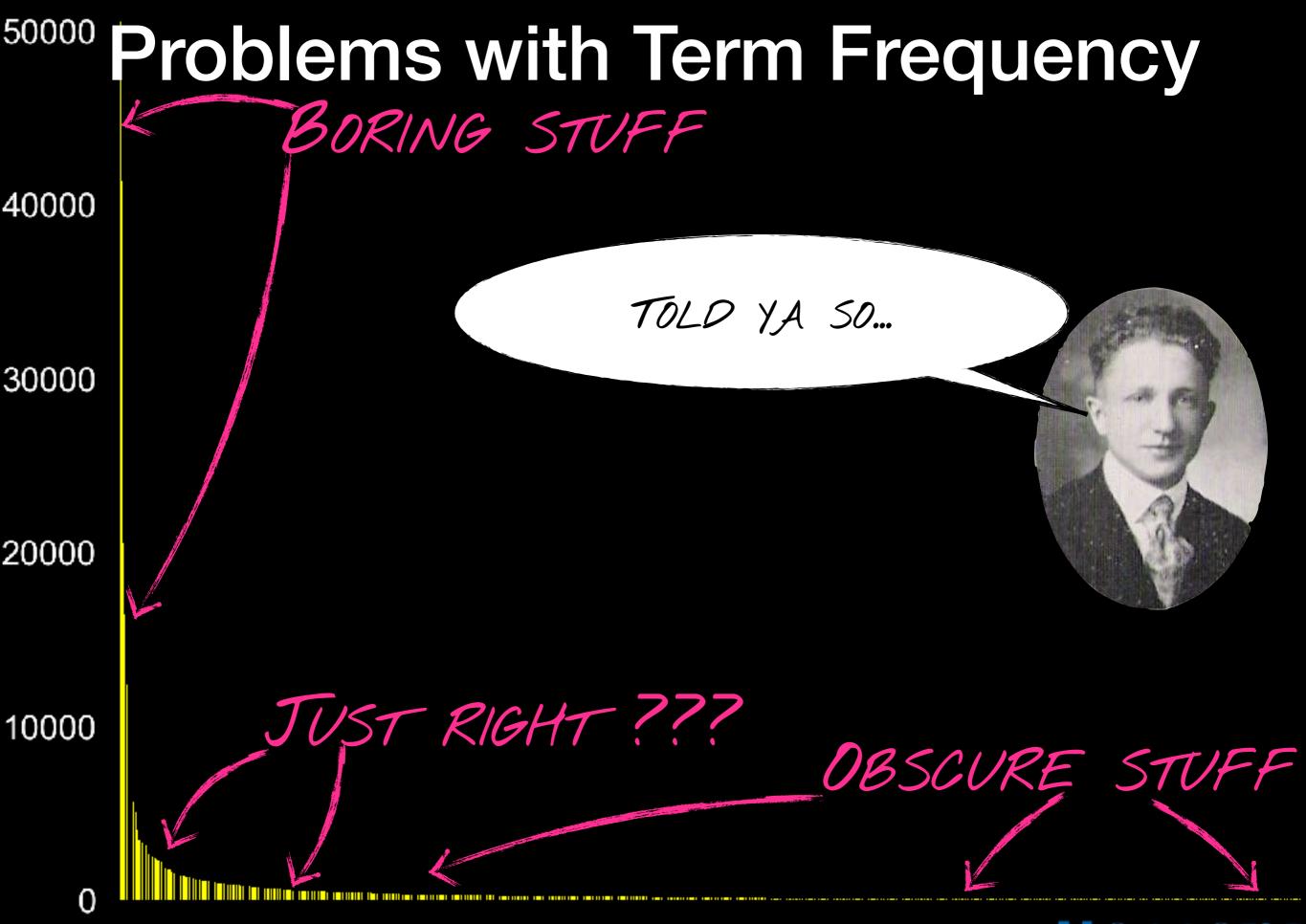
Some Words are Just More Interesting...

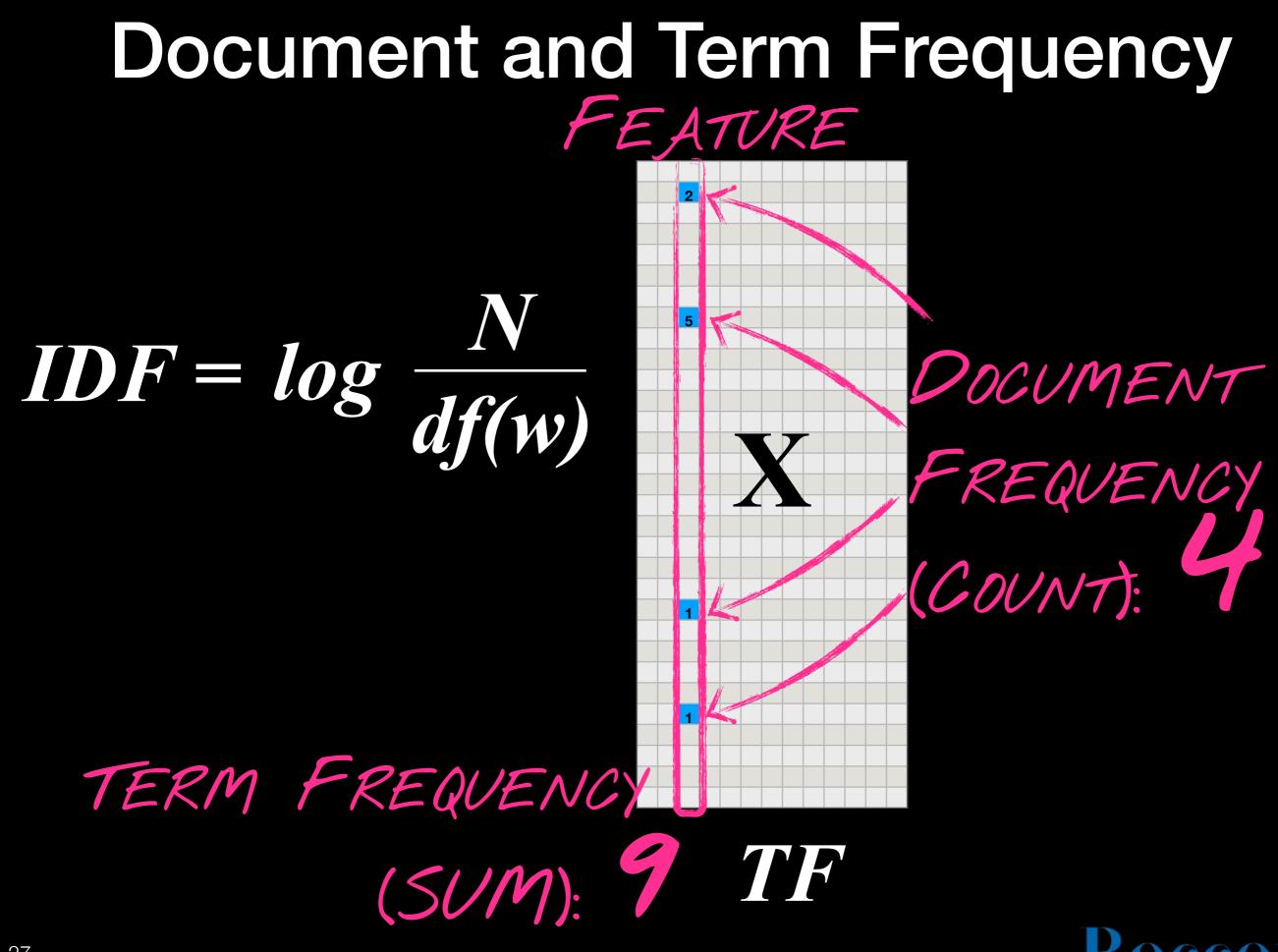
-the the -the	-the -the-	the the	the sustainable
the	sustainable the the	-the	the the the

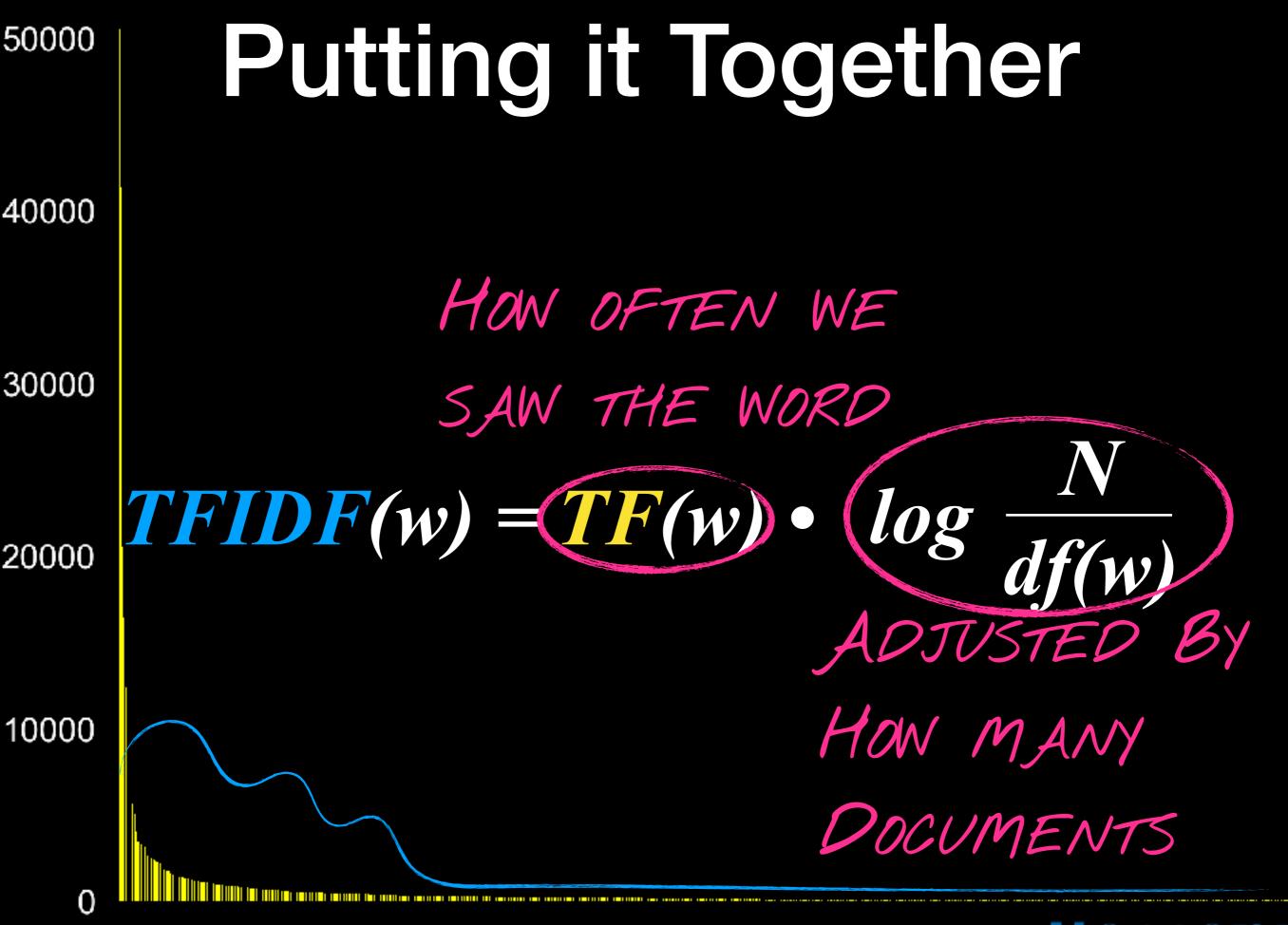
Karen Spärck Jones

1935–2007

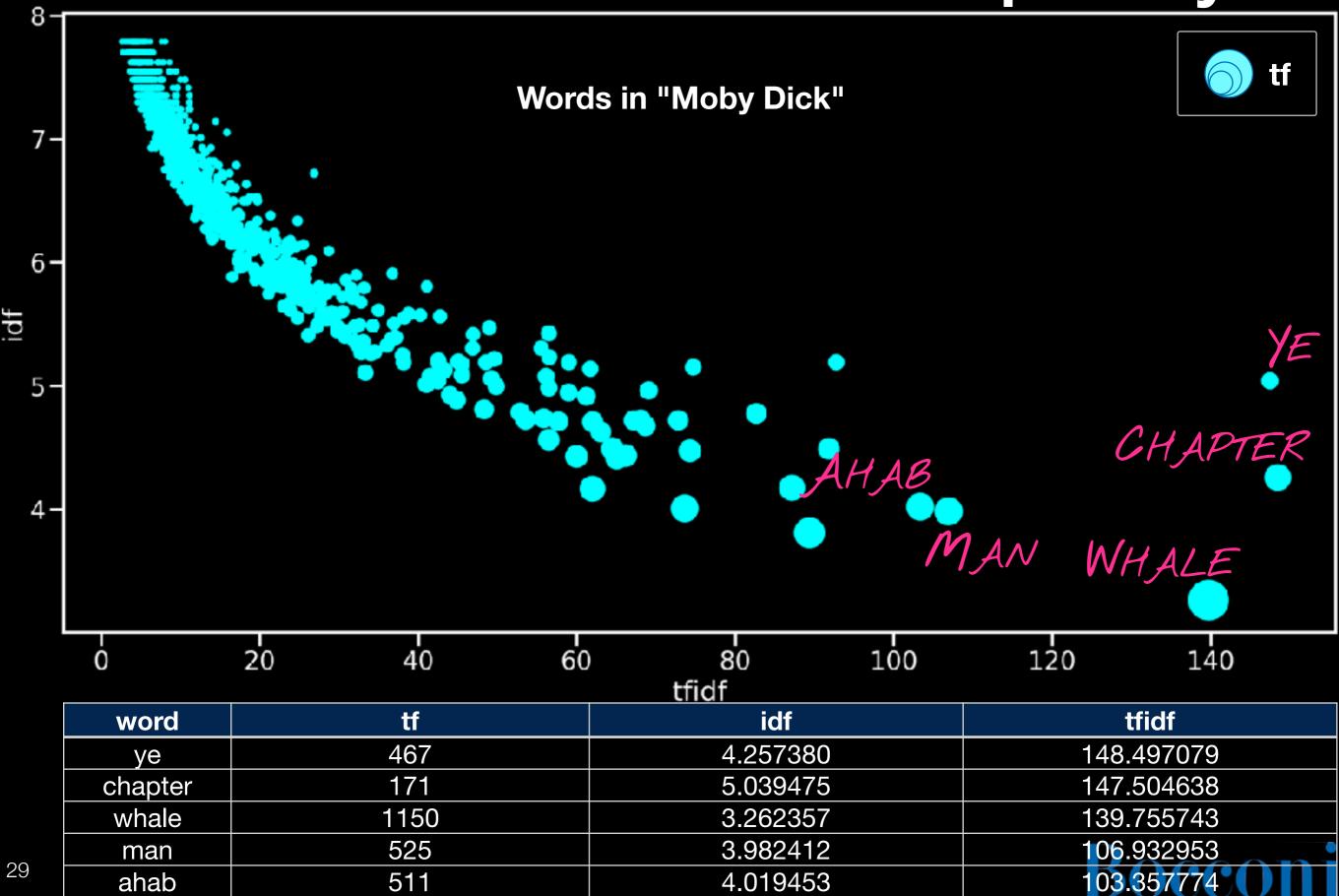
- Became a teacher before starting CS career at Cambridge
- Laid the foundation for modern NLP, Google Search, text classification
- Campaigned for more women in CS
- Namesake of prestigious CS prize







Document and Term Frequency



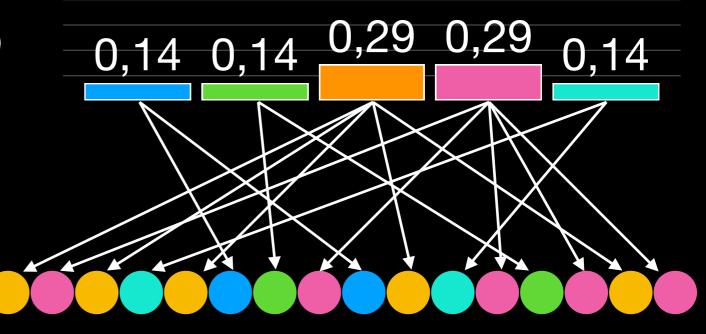
Latent Dirichlet Allocation

How to Generate Documents

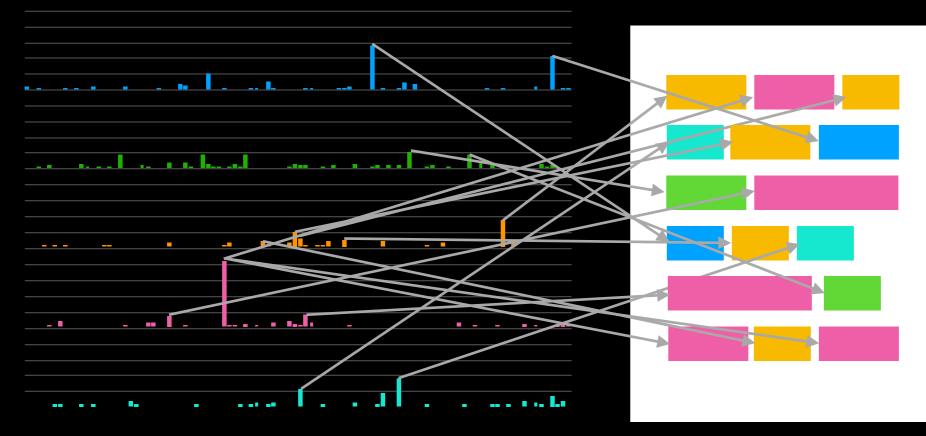
- Draw a topic distribution θ 0,14 0,14
- For i in N:

31

• Draw a topic from θ



• Sample a word from the word distribution z



$\frac{Topicsper Document}{document}$

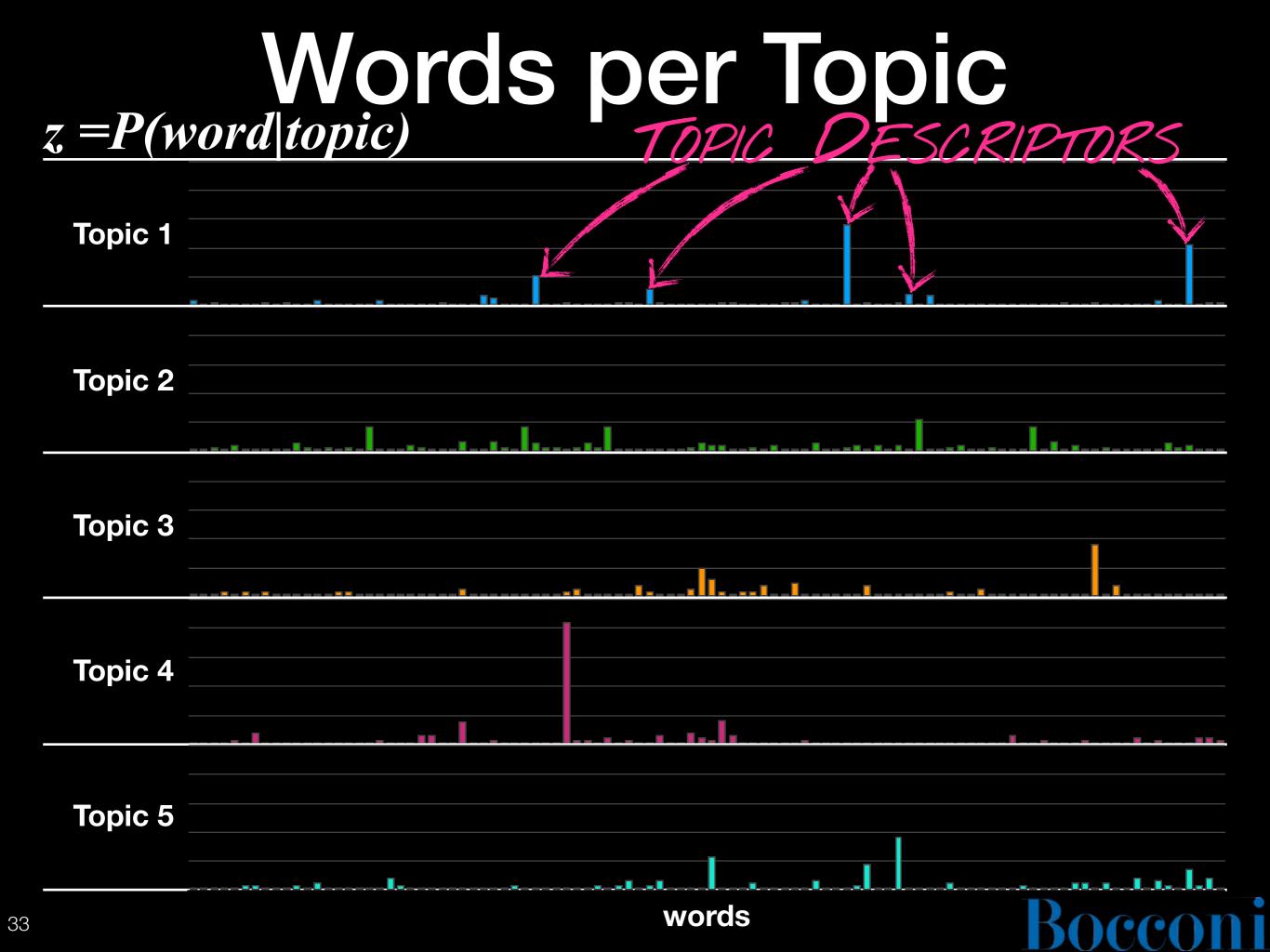
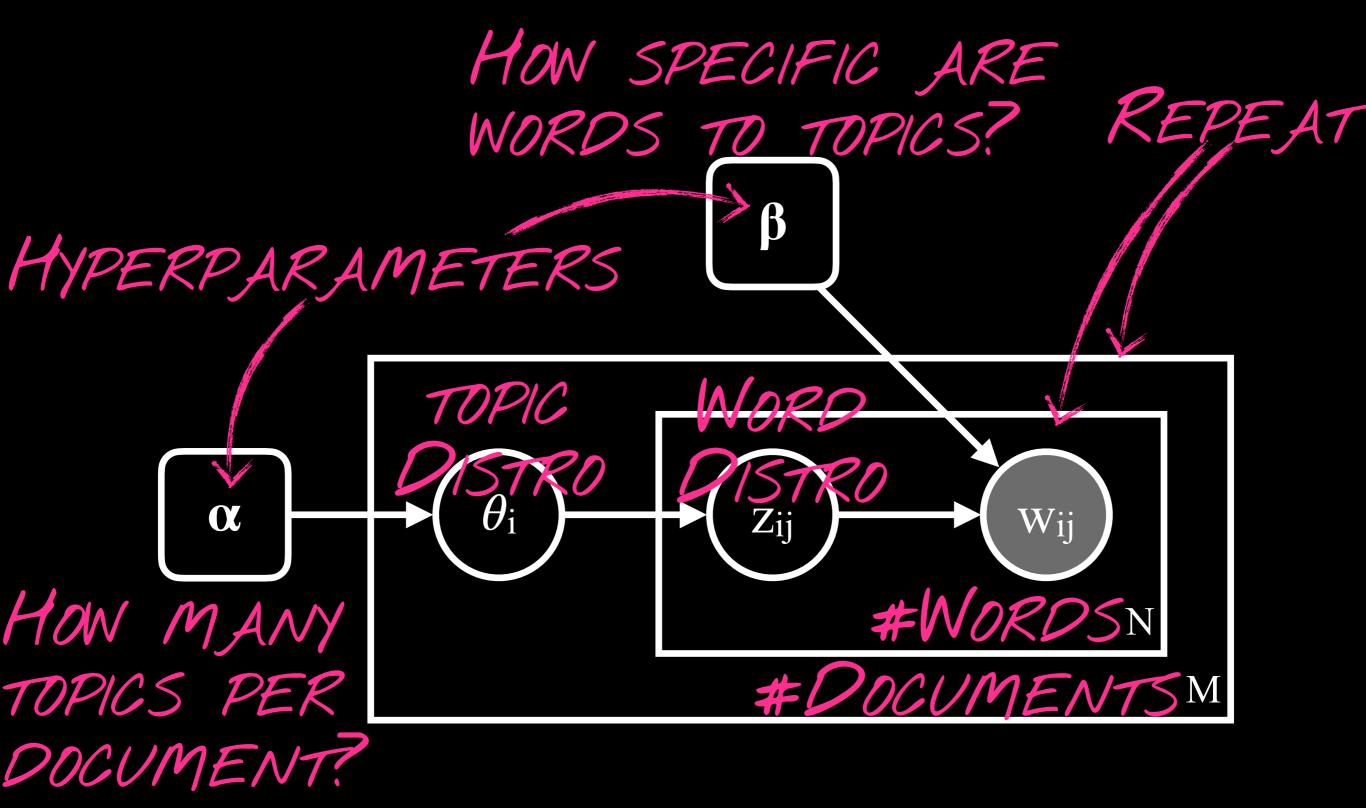
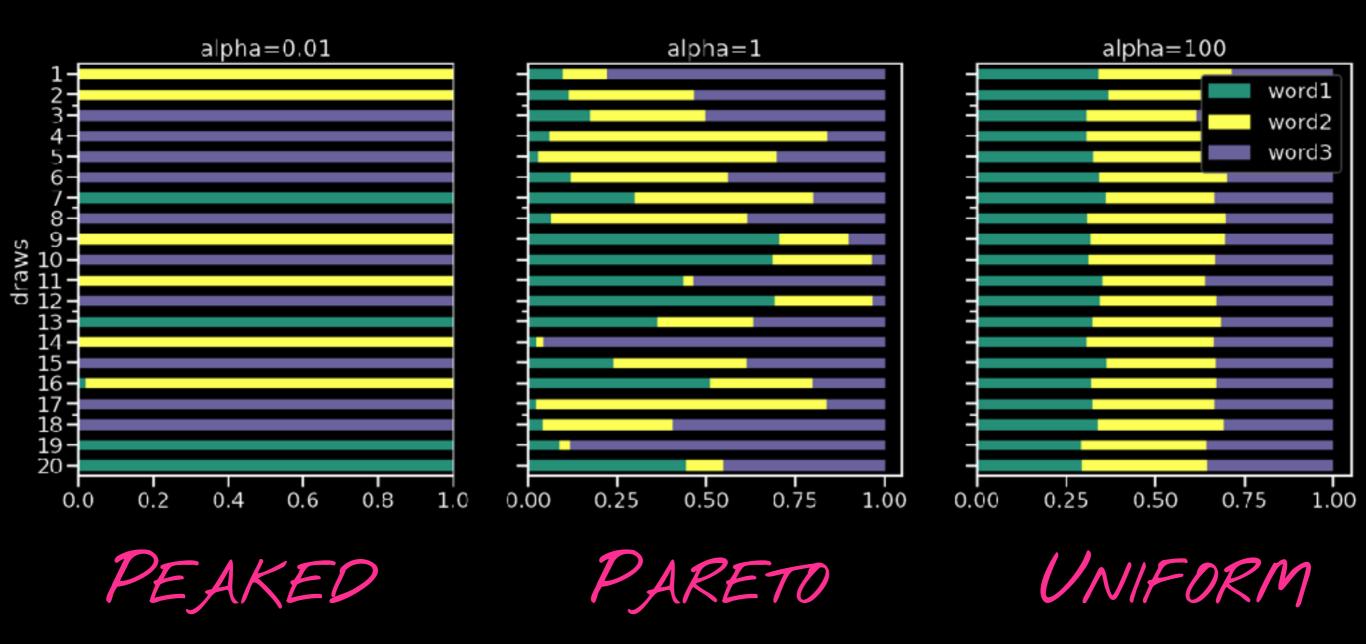


Plate Notation



Dirichlet Distributions

"DISTRIBUTION GENERATOR"



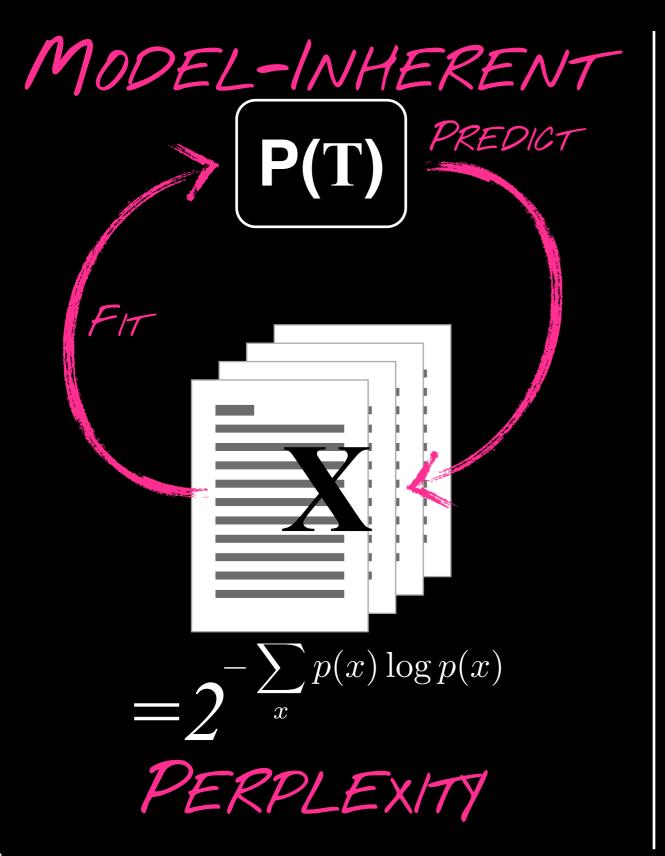
Bocconi



Parameters: β

Training and Parameters

Evaluating LDA



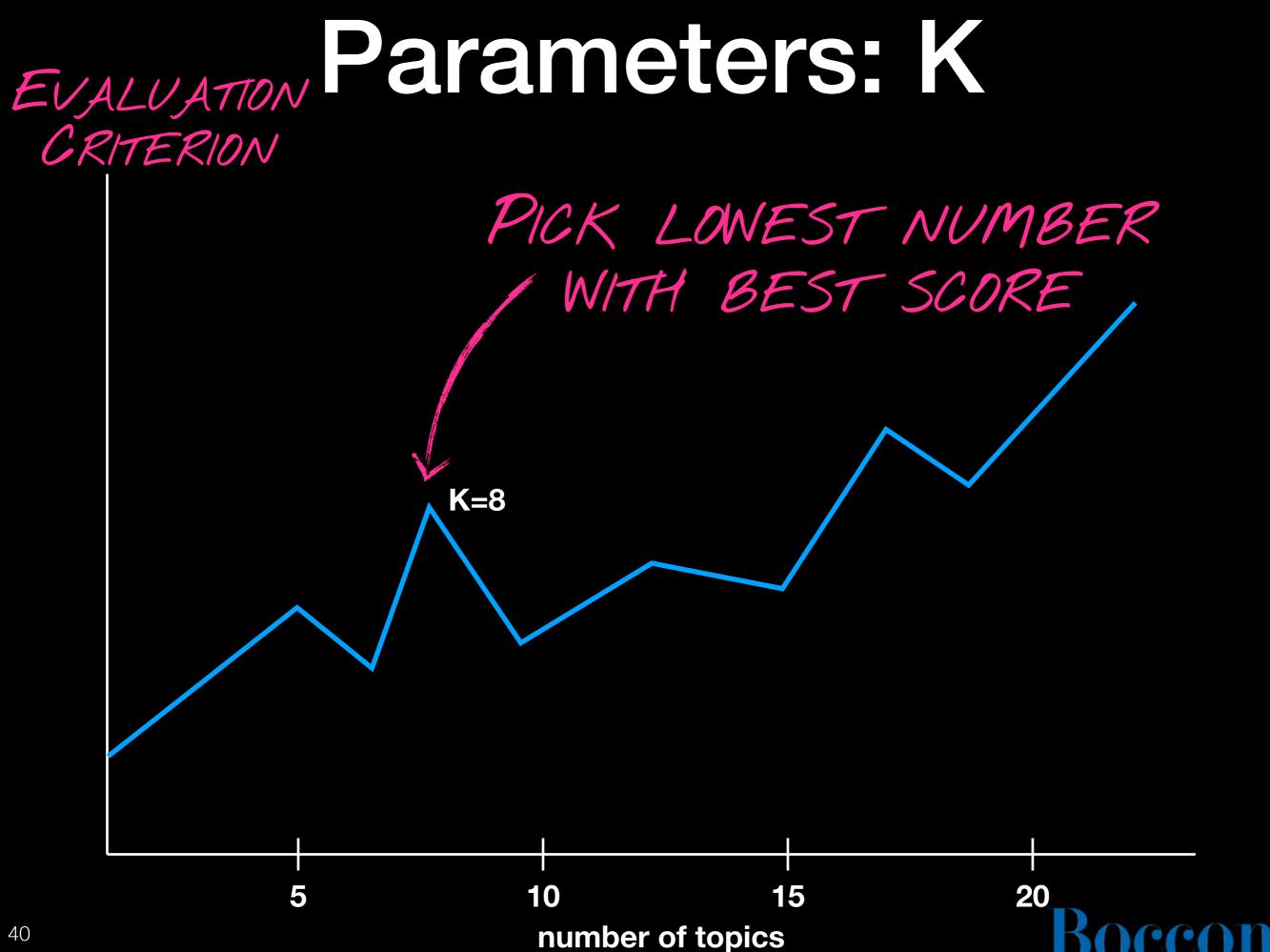
CONTENT-BASED

[apple, banana, pear, lime, orange]

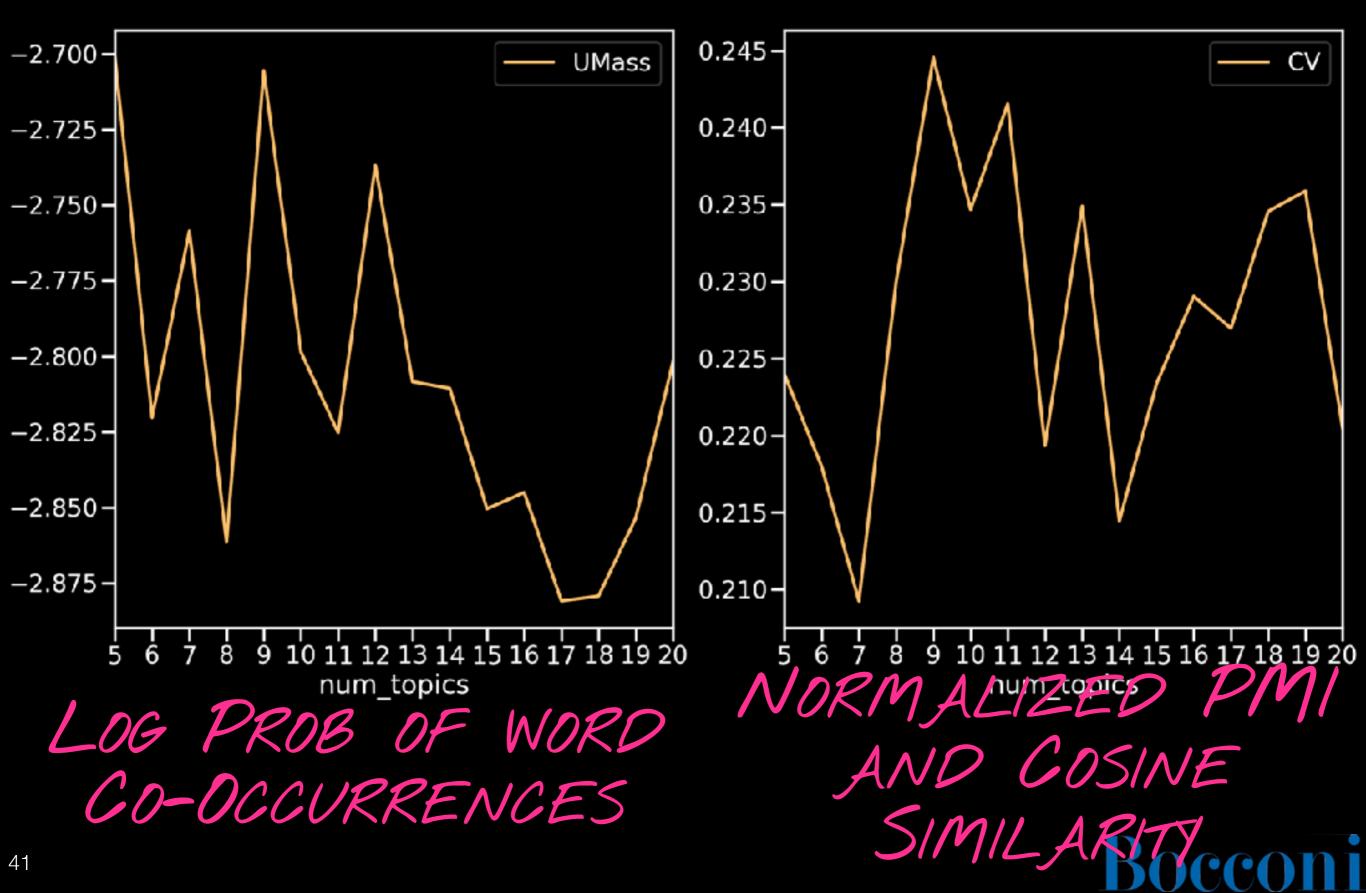
[apple, banana, foot, lime, orange]

WHICH ONE'S WRONG?

WORD INTRUSION Bocconi



Coherence Scores



Word and Topic Intrusion

0	LIDOSE U WOI	ia that is <u>1101</u>	related to ot	11015		
	O loud	O time	O music	O sound	O quality	O speaker

TOPIC INTRUSION

Which group of words does **not** describe the following sentence:

I get my morning facts and news all in one easy to use system.

easy, use, setup, simple, install

) control, command, system, integration, smart

music, weather, news, alarm, timer

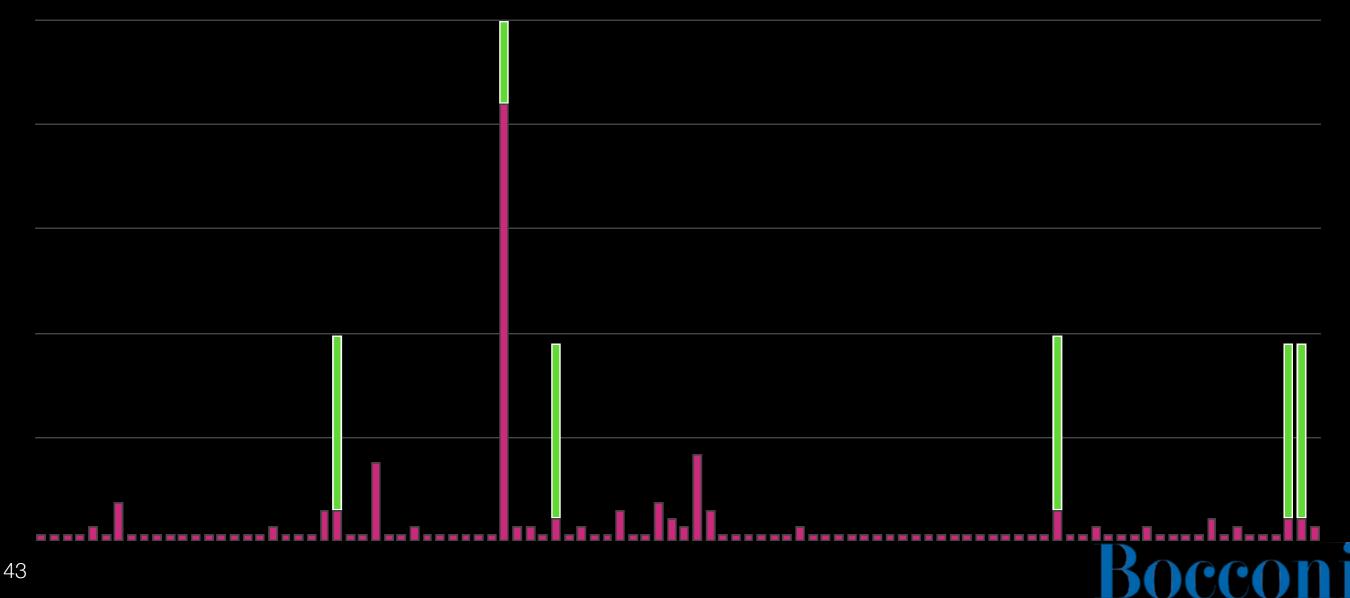
price, buy, sale, deal, item

Slide credit: Hanh Nguyen

42

Adding Constraints

- Maybe we know which words go with a topic
- Fix some probabilities/add smoothing



Author Topic Models

Learn separate topic distribution for external factors

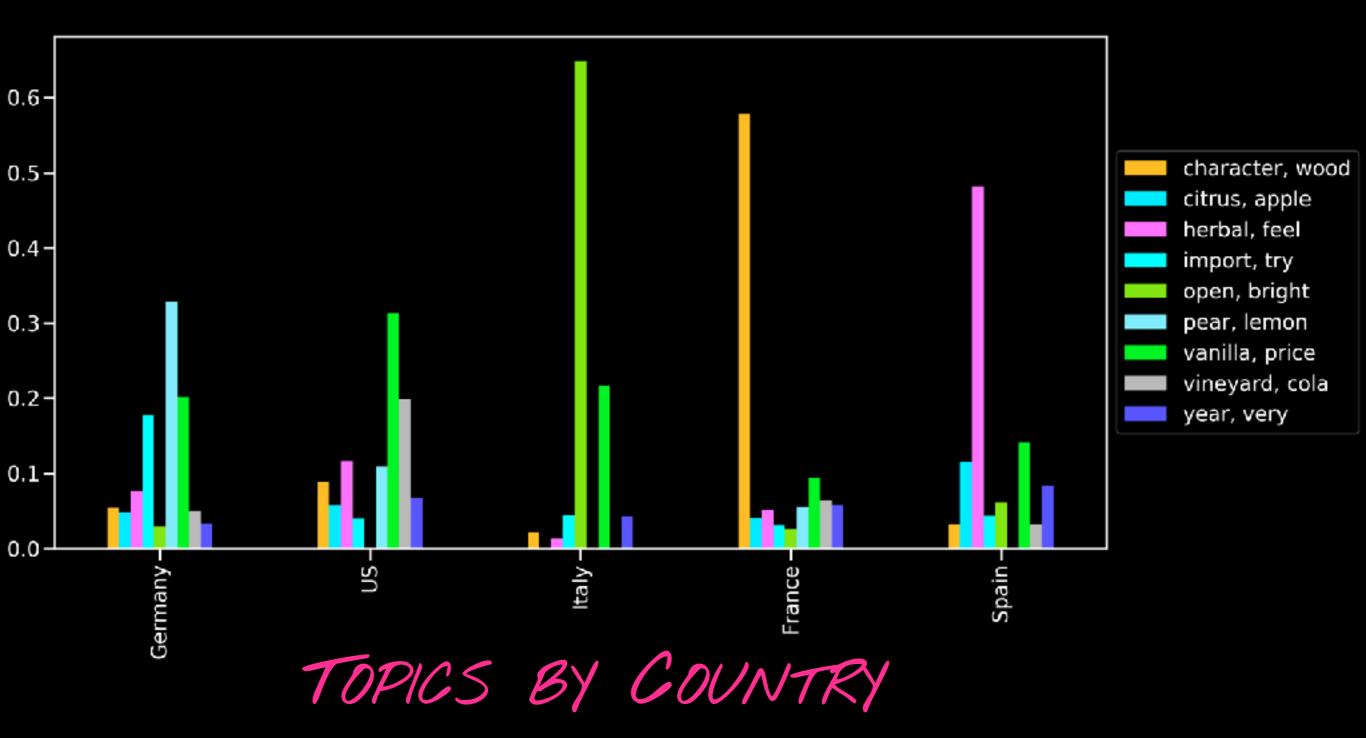
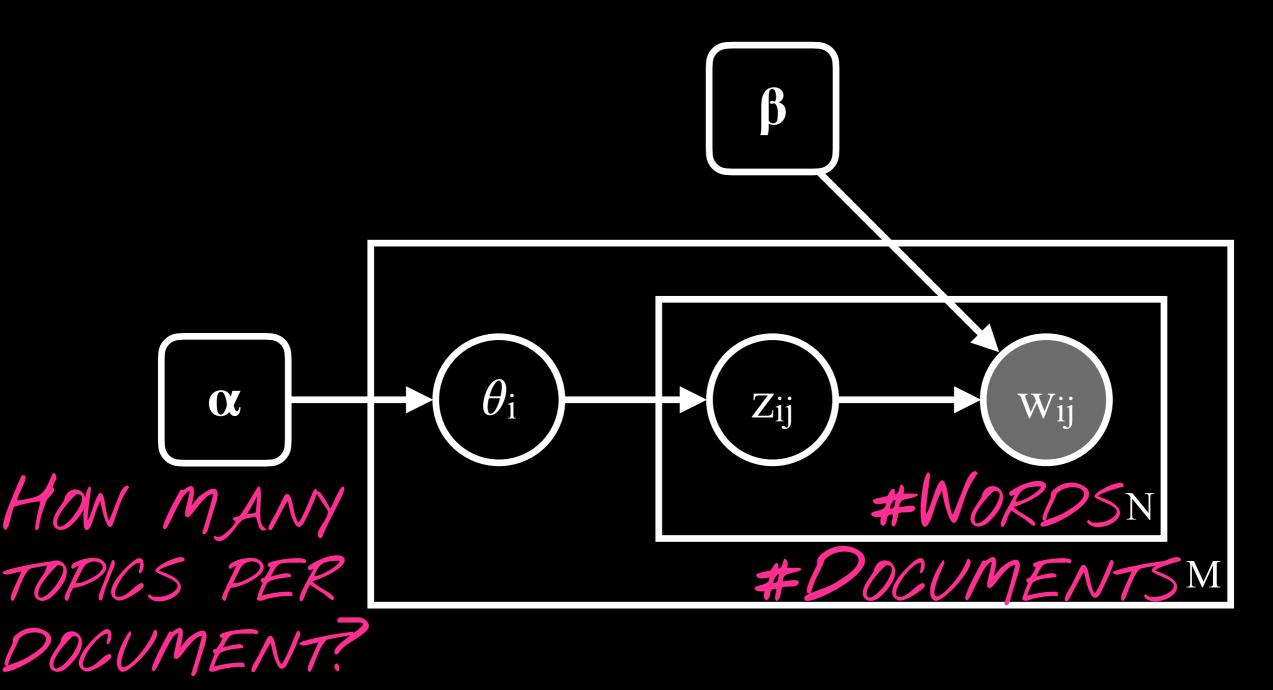
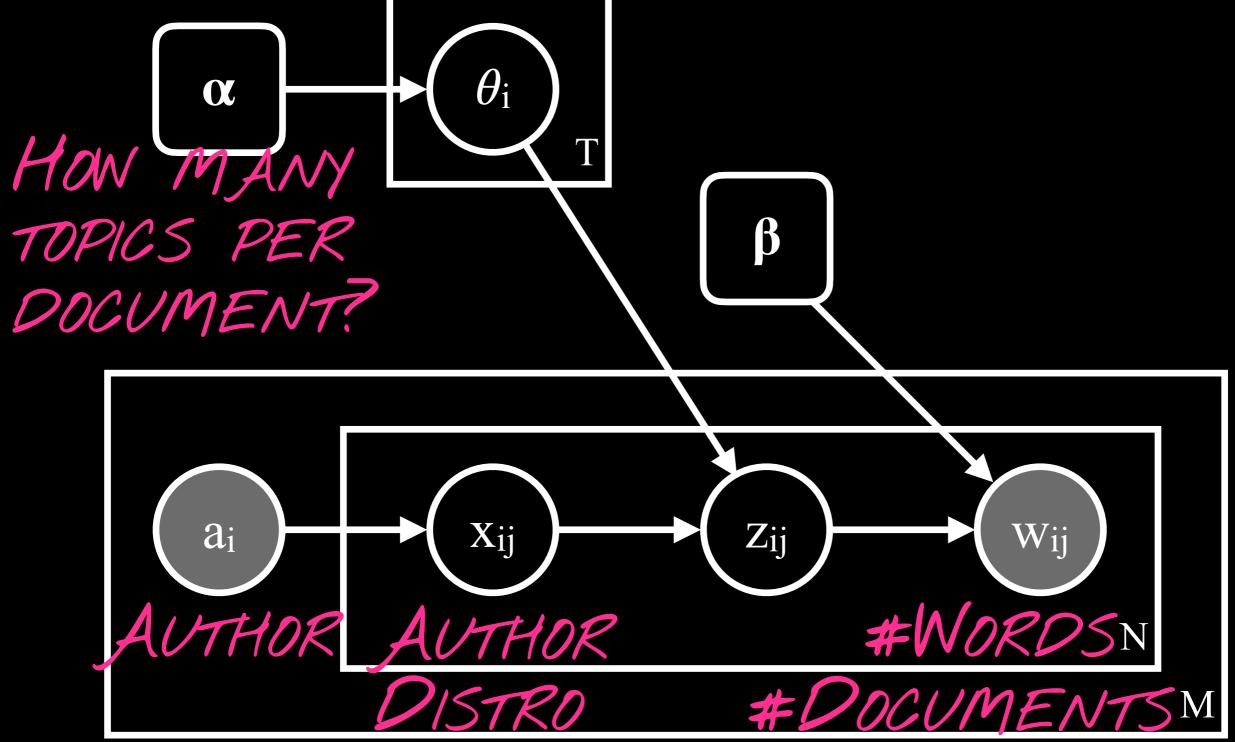


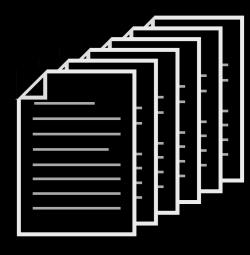
Plate Notation

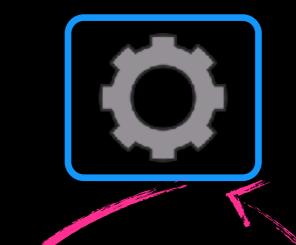




Wrapping Up

How to use Topic Models





[pasta, pizza, wine, sauce, spaghetti]

FOOD

preprocess

- find best #topics
- find best parameters
- check output

choose top 5 words
name

Topic models ALWAYS need manual assessment, because:

- Random initialization: no two models are the same!
- More likely models ≠ more interpretable topics
- "Interpretable" is subjective
- Topics are not stable from run to run

NEVER USE TOPICS AS INPUT TO REGRESSION!

Take-Home Points

- LDA is one architecture for topic models
- Model document generation conditioned on latent topics
- Topic models are **stochastic**: each run is different
- Preprocessing and parameters influence performance
- Results need to be interpreted!
- We can introduce constraints through priors or labels

To Neural and Beyond

https://github.com/MilaNLProc/contextualized-topic-models

- Based on neural networks: better coherence
- cross-lingual: train in one language, use in others

add supervision: use document labels (similar to author topics)

	Sentence	Торіс
IT	Blackmore's Night is a British/American traditional folk rock duo [] Blackmore's Night sono la band fondatrice del renaissance rock [] Blackmore's Night'e uma banda de folk rock de estilo []	rock, band, bass, formed rock, band, bass, formed rock, band, bass, formed
FR	Langton's ant is a two-dimensional Turing machine with [] On nomme fourmi de Langton un automate cellulaire [] Die Ameise ist eine Turingmaschine mit einem []	math, theory, space, numbers math, theory, space, numbers math, theory, space, numbers